Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Jun, WEI Haijuan, WANG Zhiwei. ENHANCED PHOSPHORUS RECOVERY FROM WASTEWATER BY MEMBRANE FILTRATION COUPLED WITH ELECTROCHEMICAL TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 7-12. doi: 10.13205/j.hjgc.202203002
Citation: XU Jun, WEI Haijuan, WANG Zhiwei. ENHANCED PHOSPHORUS RECOVERY FROM WASTEWATER BY MEMBRANE FILTRATION COUPLED WITH ELECTROCHEMICAL TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 7-12. doi: 10.13205/j.hjgc.202203002

ENHANCED PHOSPHORUS RECOVERY FROM WASTEWATER BY MEMBRANE FILTRATION COUPLED WITH ELECTROCHEMICAL TECHNOLOGY

doi: 10.13205/j.hjgc.202203002
  • Received Date: 2021-06-21
    Available Online: 2022-07-07
  • A novel phosphorus recovery process combining membrane filtration and electrochemical struvite precipitation was proposed to treat phosphorus-containing wastewater. The effects of membrane flux, current density, initial phosphorus concentration and polarity reversal time on phosphorus removal and recovery were investigated. The results showed that the average phosphorus removal efficiency was 92.0% at an initial phosphorus concentration of 5 mmol/L, a membrane flux of 22.1 L/(m2·h) and a current density of 20 A/m2, and struvite was the dominant composition of the recovered products. In the flow-through operation mode, different initial phosphorus concentrations had no significant effect on phosphorus removal. When the system was operated in continuous flow mode, the phosphones removal rate was maintained at 90% by 6 min polarity reversal every 4 h operation.
  • [1]
    YE Y Y, NGO H H, GUO W S, et al. Insight into chemical phosphate recovery from municipal wastewater[J]. Science of the Total Environment, 2017, 576:159-171.
    [2]
    KUMAR R, PAL P. Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater:a review[J]. Environmental Science and Pollution Research, 2015, 22(22):17453-17464.
    [3]
    张棋,高娜,赵首萍,等.鸟粪石结晶法回收废水中氮磷的研究进展[J].四川环境, 2013, 32(1):105-109.
    [4]
    王涛,罗璟,李伟民,等.基于污泥减量的鸟粪石回收低浓度氮磷影响因素研究[J].环境工程, 2010, 28(5):47-50.
    [5]
    PASTOR L, MANGIN D, BARAT R, et al. A pilot-scale study of struvite precipitation in a stirred tank reactor:conditions influencing the process[J]. Bioresource Technology, 2008, 99(14):6285-6291.
    [6]
    STRATUL I, SCRIMSHAW M D, LESTER J N. Conditions influencing the precipitation of magnesium ammonium phosphate[J]. Water Research, 2001, 35(17):4191-4199.
    [7]
    LEI Y, SONG B N, van DER WEIJ R D, et al. Electrochemical induced calcium phosphate precipitation:importance of local pH[J]. Environmental Science&Technology, 2017, 51(19):11156-11164.
    [8]
    BEN MOUSSA S, MAURIN G, GABRIELLI C, et al. Electrochemical precipitation of struvite[J]. Electrochemical and Solid State Letters, 2006, 9(6):C97-C101.
    [9]
    LIU Y, DENG Y Y, ZHANG Q, et al. Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies[J]. Science of the Total Environment, 2021, 757:143901.
    [10]
    KELLY P T, HE Z. Nutrients removal and recovery in bioelectrochemical systems:a review[J]. Bioresource Technology, 2014, 153:351-360.
    [11]
    RADJENOVIC J, SEDLAK D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J]. Environmental Science&Technology, 2015, 49(19):11292-11302.
    [12]
    SUN M, WANG X X, WINTER L R, et al. Electrified membranes for water treatment applications[J]. ACS ES&T Engineering, 2021, 1(4):725-752.
    [13]
    GAYEN P, SPATARO J, AVASARALA S, et al. Electrocatalytic reduction of nitrate using magneli phase TiO2 reactive electrochemical membranes doped with Pd-based catalysts[J]. Environmental Science&Technology, 2018, 52(16):9370-9379.
    [14]
    WANG C C, HAO X D, GUO G S, et al. Formation of pure struvite at neutral pH by electrochemical deposition[J]. Chemical Engineering Journal, 2010, 159(1):280-283.
    [15]
    陈龙,赵剑强,张渝,等.电化学沉淀法从废水中回收鸟粪石[J].环境工程学报, 2014, 8(12):5264-5270.
    [16]
    YANG J, WANG J, JIA J P. Improvement of electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor[J]. Environmental Science&Technology, 2009, 43(10):3796-3802.
    [17]
    TAKABE Y, OTA N, FUJIYAMA M, et al. Utilisation of polarity inversion for phosphorus recovery in electrochemical precipitation with anaerobic digestion effluent[J]. Science of the Total Environment, 2020, 706:136090.
    [18]
    TANSEL B, LUNN G, MONJE O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery:a review of magnesium-ammonia-phosphate interactions[J]. Chemosphere, 2018, 194:504-514.
    [19]
    LEI Y, REMMERS J C, SAAKES M, et al. Influence of cell configuration and long-term operation on electrochemical phosphorus recovery from domestic wastewater[J]. ACS Sustainable Chemistry&Engineering, 2019, 7(7):7362-7368.
    [20]
    CUSICK R D, ULLERY M L, DEMPSEY B A, et al. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell[J]. Water Research, 2014, 54(5):297-306.
    [21]
    LEI Y, REMMERS J C, SAAKES M, et al. Is there a precipitation sequence in municipal wastewater induced by electrolysis?[J]. Environmental Science&Technology, 2018, 52(15):8399-8407.
  • Relative Articles

    [1]LAN Rui, YANG Xiaofan, CUI Haoran, YAN Lingjian, LIU Xinyi, GAO Xiaozhong, SUN Dezhi, CHENG Xiang. RESEARCH PROGRESS ON VIVIANITE CRYSTALLIZATION-BASED PHOSPHORUS REMOVAL AND RECOVERY FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 91-99. doi: 10.13205/j.hjgc.202409008
    [2]XU Xiaohu, SHEN Yaoliang. EFFICIENCIES OF DIFFERENT MAGNESIUM SOURCES IN STRUVITE FORMATION FROM IRON PHOSPHATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 108-115. doi: 10.13205/j.hjgc.202409010
    [3]CHEN Yuqi, SHAO Dengke, HAN Feiyang, LIU Xiaoning. GRADED CRYSTALLIZATION AND PHOSPHORUS RECOVERY BY FORM OF STRUVITE FROM PHOSPHOGYPSUM LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 119-124. doi: 10.13205/j.hjgc.202404014
    [4]FAN Yu, HUA Yu, YANG Donghai, DAI Xiaohu. RESEARCH PROGRESS ON SEPARATION AND RECOVERY OF ALUMINUM COAGULANTS FROM WASTEWATER SLUDGE IN THE CONTEXT OF CIRCULAR ECONOMY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 210-220. doi: 10.13205/j.hjgc.202309026
    [5]ZHU Jiaming, HE Yuecheng, LONG Dingbiao, HUANG Qian, XU Wenlai, PU Shihua, JIAN Yue. INVESTIGATION OF FACTORS INFLUENCING THE RECOVERY OF PHOSPHORUS FROM SWINE WASTEWATER BY HAP CRYSTALLIZATION BASED ON SPENT FOAM CONCRETE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 1-7,17. doi: 10.13205/j.hjgc.202308001
    [6]HOU Haimeng, QI Guoshu, WANG Jian, LI Baolei, KONG Deyong, ZHAO Yan, CHEN Ming, ZENG Le. ELECTROCHEMICAL OXIDATION OF WASTE EMULSION WITH BORON-DOPED DIAMOND ANODES(BDD)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 46-51. doi: 10.13205/j.hjgc.202201008
    [7]GUO Yun, LI Zhouyan, WANG Zhiwei. RESEARCH PROGRESS OF ELECTROCHEMICAL MEMBRANE FILTRATION FOR WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 253-269. doi: 10.13205/j.hjgc.202212034
    [8]SHI Yu-cui, LUO Xin-yi, TANG Gang, YE Yan-chao, YOU Shao-hong. RESEARCH PROGRESS AND PROSPECTS OF CONSTRUCTED WETLAND-MICROBIAL FUEL CELL COUPLING SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 25-33. doi: 10.13205/j.hjgc.202108004
    [9]ZHANG Zong-bin, YUE Zheng-bo, WU Jing-hang, WANG Jin. CHARACTERISTICS ANALYSIS OF AN ELECTRICITY-PRODUCING STRAIN SHEWANELLA XMS-1 FROM MARINE SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 33-39. doi: 10.13205/j.hjgc.202101004
    [10]ZHANG Wen, LIN Chang-xi, PENG Yong-zhen. RECOMMENDATIONS ON INTEGRATION AND OPTIMIZATION OF NEAR-ZERO DISCHARGE TECHNOLOGY FOR WASTEWATER FROM MODERN COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 41-45,109. doi: 10.13205/j.hjgc.202111004
    [11]CHENG Lu-yao, LI Juan, WANG Liang-jie, DU Ji-jun, ZENG Ping, ZHAO Xiu-mei, WANG Chen-hao. DEVELOPMENT TREND ANALYSIS OF BIOAUGMENTATION TECHNOLOGY FOR WASTEWATER TREATMENT BASED ON BIBLIOMETRIC[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 40-47. doi: 10.13205/j.hjgc.202103006
    [12]DUAN Shou-peng, ZHENG Shao-kui. EFFECT OF NAHCO3 ADDITION INTO NaCl REGENERANT ON NITRATE-SELECTIVE ION EXCHANGE REMOVAL PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 72-77. doi: 10.13205/j.hjgc.202011012
    [13]QU Guang-fei, AN Zhi, NING Ping, XIE Ruo-song. GENERAL SURVEY ON APPLICATION OF NUMERICAL SIMULATION IN SEWAGE BIOLOGICAL TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 99-104,179. doi: 10.13205/j.hjgc.202003017
    [14]LIU Xue-yu, LIN Yu, WANG Fang-zhou, YAN Bing-fei, XIAO Shu-hu, WEI Dong-yang. STUDY ON PHOSPHORUS RECOVERY EFFICIENCY USING THREE CRYSTAL SEEDS AND THE PRODUCTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 81-85,139. doi: 10.13205/j.hjgc.202002011
    [15]Li Changhai Liu Xuewen Jia Dongmei Li Yuejin Liu Juanjuan Sui Tao, . STUDY ON SLAUGHTERHOUSE WASTEWATER TREATMENT BY OXIDIZED/MEMBRANE FILTRATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 14-17. doi: 10.13205/j.hjgc.201505004
    [16]Bu Fan Xie Li Lu Bin Cao Rong Zhou Qi, . STUDY ON PHOSPHOROUS RECOVERY BY STRUVITE CRYSTALLIZATION IN EFFLUENT FROM AN ANAEROBIC MEMBRANE BIOREACTOR TREATING SWINE MANURE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 1-4. doi: 10.13205/j.hjgc.201508001
    [17]Wu Tie Zhao Chunli Liu Dajun Gu Rui, . EXPLORATION OF WASTEWATER ZERO-EMISSION TECHNOLOGIES IN IRON AND STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 146-149. doi: 10.13205/j.hjgc.201504031
  • Cited by

    Periodical cited type(1)

    1. 史金卓,胡以松,肖文倩,李松华,杨媛,田文瑞. 电化学-膜生物反应器强化污废水处理的研究进展. 工业水处理. 2024(05): 32-41 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.5 %FULLTEXT: 15.5 %META: 81.4 %META: 81.4 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.6 %其他: 11.6 %China: 0.7 %China: 0.7 %[]: 0.2 %[]: 0.2 %三明: 0.2 %三明: 0.2 %上海: 3.4 %上海: 3.4 %东莞: 0.5 %东莞: 0.5 %临汾: 0.2 %临汾: 0.2 %保定: 0.2 %保定: 0.2 %内江: 0.2 %内江: 0.2 %北京: 4.8 %北京: 4.8 %南京: 1.0 %南京: 1.0 %南宁: 0.7 %南宁: 0.7 %南通: 0.2 %南通: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 1.2 %台州: 1.2 %合肥: 0.2 %合肥: 0.2 %咸阳: 1.0 %咸阳: 1.0 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 0.2 %天津: 0.2 %太原: 0.2 %太原: 0.2 %宜昌: 0.7 %宜昌: 0.7 %宿州: 0.2 %宿州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.0 %广州: 1.0 %张家口: 0.7 %张家口: 0.7 %德阳: 0.7 %德阳: 0.7 %悉尼: 1.7 %悉尼: 1.7 %惠州: 0.2 %惠州: 0.2 %成都: 1.2 %成都: 1.2 %扬州: 0.2 %扬州: 0.2 %无锡: 1.7 %无锡: 1.7 %旧金山: 0.5 %旧金山: 0.5 %昆明: 1.4 %昆明: 1.4 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.5 %杭州: 0.5 %武汉: 1.7 %武汉: 1.7 %济源: 0.5 %济源: 0.5 %湖州: 0.2 %湖州: 0.2 %漯河: 1.4 %漯河: 1.4 %盐城: 0.5 %盐城: 0.5 %石家庄: 1.0 %石家庄: 1.0 %福州: 1.0 %福州: 1.0 %纽约: 0.7 %纽约: 0.7 %绍兴: 1.7 %绍兴: 1.7 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %芝加哥: 2.4 %芝加哥: 2.4 %萍乡: 0.2 %萍乡: 0.2 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.5 %衡阳: 0.5 %衢州: 0.5 %衢州: 0.5 %西宁: 19.1 %西宁: 19.1 %贵阳: 0.2 %贵阳: 0.2 %运城: 2.9 %运城: 2.9 %遵义: 0.2 %遵义: 0.2 %郑州: 1.2 %郑州: 1.2 %重庆: 0.7 %重庆: 0.7 %镇江: 0.2 %镇江: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.2 %长治: 0.2 %阳泉: 0.2 %阳泉: 0.2 %雷德蒙德: 0.5 %雷德蒙德: 0.5 %其他China[]三明上海东莞临汾保定内江北京南京南宁南通厦门台州合肥咸阳哈尔滨嘉兴天津太原宜昌宿州常德广州张家口德阳悉尼惠州成都扬州无锡旧金山昆明晋城朝阳杭州武汉济源湖州漯河盐城石家庄福州纽约绍兴芒廷维尤芝加哥萍乡衡水衡阳衢州西宁贵阳运城遵义郑州重庆镇江长沙长治阳泉雷德蒙德

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (336) PDF downloads(15) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return