Citation: | XING Xin, LI Na, CHENG Jie. SELECTIVE CATALYTIC OXIDATION PERFORMANCE OF N-BUTYLAMINE OVER Cu-ZSM-5 CATALYSTS WITH DIFFERENT COPPER LOADINGS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 51-58. doi: 10.13205/j.hjgc.202203009 |
[1] |
LI S D, WANG D D, WU X F, et al. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides[J]. Chinese Journal of Catalysis, 2020, 41(4):550-560.
|
[2] |
PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds[J]. Critical Reviews in Environmental Science and Technology, 2008, 39(1):41-78.
|
[3] |
王海林,张国宁,聂磊,等.我国工业VOCs减排控制与管理对策研究[J].环境科学, 2011, 32(12):3462-3468.
|
[4] |
LIOTTA L F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B:Environmental, 2010, 100(3/4):403-412.
|
[5] |
李娟娟,张梦,蔡松财,等.光热催化氧化VOCs的研究进展[J].环境工程, 2020, 38(1):13-20.
|
[6] |
HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds:a review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7):4471-4568.
|
[7] |
SCIRÈ S, LIOTTA L F. Supported gold catalysts for the total oxidation of volatile organic compounds[J]. Applied Catalysis B:Environmental, 2012, 125:222-246.
|
[8] |
曹利,连子,黄学敏, MnCeOx/沸石催化剂对工业典型VOCs的催化性能[J].环境工程, 2020, 38(1):48-53.
|
[9] |
ZHU L L, SHEN D K, LUO K H. A critical review on VOCs adsorption by different porous materials:species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389:122102.
|
[10] |
许子飏,莫胜鹏,付名利,等.稀土材料在挥发性有机废气降解中的应用及发展趋势[J].环境工程, 2020, 38(1):1-12
, 36.
|
[11] |
NANBA T, MASUKAWA S, UCHISAWA J, et al. Screening of catalysts for acrylonitrile decomposition[J]. Catalysis letters, 2004, 93:195-201.
|
[12] |
NANBA T, MASUKAWA S, OGATA A, et al. Active sites of Cu-ZSM-5 for the decomposition of acrylonitrile[J]. Applied Catalysis B:Environmental, 2005, 61(3/4):288-296.
|
[13] |
NANBA T, MASUKAWA S, UCHISAWA J, et al. Mechanism of acrylonitrile decomposition over Cu-ZSM-5[J]. Journal of Molecular Catalysis A:Chemical, 2007, 276(1/2):130-136.
|
[14] |
ZHANG R D, SHI D J, LIU N, et al. Mesoporous SBA-15 promoted by 3d-transition and noble metals for catalytic combustion of acetonitrile[J]. Applied Catalysis B:Environmental, 2014, 146:79-93.
|
[15] |
WANG Q, WANG X Q, WANG L L, et al. Catalytic oxidation and hydrolysis of HCN over LaxCuy/TiO2 catalysts at low temperatures[J]. Microporous and Mesoporous Materials, 2019, 282:260-268.
|
[16] |
MA M D, HUANG H, CHEN C W, et al. Highly active SBA-15-confined Pd catalyst with short rod-like micro-mesoporous hybrid nanostructure for n-butylamine low-temperature destruction[J]. Molecular Catalysis, 2018, 455:192-203.
|
[17] |
MA M D, JIAN Y F, CHEN C W, et al. Spherical-like Pd/SiO2 catalysts for n-butylamine efficient combustion:effect of support property and preparation method[J]. Catalysis Today, 2020, 339:181-191.
|
[18] |
XING X, LI N, SUN Y G, et al. Selective catalytic oxidation of n-butylamine over Cu-zeolite catalysts[J]. Catalysis Today, 2020,339:192-199.
|
[19] |
XING X, LI N, CHENG J, et al. Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of n-butylamine[J]. Journal of Environmental Sciences, 2020, 96:55-63.
|
[20] |
LAI S S, MENG D M, ZHAN W C, et al. The promotional role of Ce in Cu/ZSM-5 and in situ surface reaction for selective catalytic reduction of NOx with NH3[J]. RSC Advances, 2015, 5(110):90235-90244.
|
[21] |
XUE H Y, GUO X M, WANG S D, et al. Poisoning effect of CaO on Cu/ZSM-5 for the selective catalytic reduction of NO with NH3[J]. Catalysis Communications, 2018, 112:53-57.
|
[22] |
NAVLANI-GARCÍA M, MARTIS M, LOZANO-CASTELLÓ, et al. Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation[J]. Catalysis Science&Technology, 2015, 5(1):364-371.
|
[23] |
YASHNIK S A, ISMAGILOV Z R, ANUFRIENKO V F. Catalytic properties and electronic structure of copper ions in Cu-ZSM-5[J]. Catalysis Today, 2005, 110(3/4):310-322.
|
[24] |
YASHNIK S A, SALNIKOV A V, VASENIN N T, et al. Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu2+[J]. Catalysis Today, 2012, 197(1):214-227.
|
[25] |
LIU X, WU X, WENG D, et al. Modification of Cu/ZSM-5 catalyst with CeO2 for selective catalytic reduction of NOx with ammonia[J]. Journal of Rare Earths, 2016, 34(10):1004-1009.
|
[26] |
DOU B J, LV G, WANG C, et al. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chemical Engineering Journal, 2015, 270:549-556.
|
[27] |
DE LA TORRE U, URRUTXUA M, PEREDA-AYO B, et al. On the Cu species in Cu/beta catalysts related to DeNOx performance of coupled NSR-SCR technology using sequential monoliths and dual-layer monolithic catalysts[J]. Catalysis Today, 2016, 273:72-82.
|
[28] |
BLANCH-RAGA N, PALOMARES A E, MARTÍNEZ-TRIGUERO J, et al. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation[J]. Applied Catalysis B:Environmental, 2016, 187:90-97.
|
[29] |
HAN S, CHENG J, ZHENG C K, et al. Effect of Si/Al ratio on catalytic performance of hydrothermally aged Cu-SSZ-13 for the NH3-SCR of NO in simulated diesel exhaust[J]. Applied Surface Science, 2017, 419:382-392.
|
[30] |
BAI Y T, WU W Y, BIAN X. Investigation of the interactions in CeO2-Fe2O3 binary metal oxides supported on ZSM-5 for NO removal by CO in the presence of O2, SO2 and steam[J]. RSC Advances, 2017, 7(89):56447-56456.
|
[31] |
LIU J X, SONG W Y, XU C, et al. The selective catalytic reduction of NOx over a Cu/ZSM-5/SAPO-34 composite catalyst[J]. RSC Advances, 2015, 5(127):104923-104931.
|
[32] |
HUANG Q Q, ZUO S F, ZHOU R X. Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs[J]. Applied Catalysis B:Environmental, 2010, 95(3/4):327-334.
|