Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
NIU Zhenru, LI Feifei, ZHANG Youjun, QU Weigui, CONG Hui, LIU Shigang, ZHANG Jia. SPATIAL DISTRIBUTION AND CAUSES OF CHLORINATED HYDROCARBONS POLLUTION IN SOIL IN A TYPICAL CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 94-101,228. doi: 10.13205/j.hjgc.202203015
Citation: NIU Zhenru, LI Feifei, ZHANG Youjun, QU Weigui, CONG Hui, LIU Shigang, ZHANG Jia. SPATIAL DISTRIBUTION AND CAUSES OF CHLORINATED HYDROCARBONS POLLUTION IN SOIL IN A TYPICAL CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 94-101,228. doi: 10.13205/j.hjgc.202203015

SPATIAL DISTRIBUTION AND CAUSES OF CHLORINATED HYDROCARBONS POLLUTION IN SOIL IN A TYPICAL CONTAMINATED SITE

doi: 10.13205/j.hjgc.202203015
  • Received Date: 2021-03-09
    Available Online: 2022-07-07
  • Based on the study of the spatial distribution and genetic research of chlorinated hydrocarbon pollutants in the quaternary of marine and continental interdeposition in Tianjin, this paper selected a pollution site, a pesticide raw material purification workshop with a production history of 19 years, and investigated the spatial distribution of chlorinated hydrocarbon pollution and the cause of pollution in site soil through geological survey, monitoring sampling, and test analysis. Results showed that:the over-standard chlorinated hydrocarbons in the site include chloroform, 1,1-dichloroethane, 1,2-dichloroethane, carbon tetrachloride and vinyl chloride; the pollution spread around the core area consisted of the workshop in the west and middle of the site, the chemical warehouse in the north, the office in the east, and the area between the workshop in the middle and the warehouse in the east; the pollutant content first increased to the peak with the increase of depth on the whole, and then decreased significantly with the increase of depth. The peak content mainly accumulated in the middle and bottom of silty clay ④2 layer of continental layer and the upper part of silty clay ⑥1 layer or silty soil ⑥3 layer of marine layer. It showed that silty clay layer ④2 and silty clay layer ⑥1 effectively blocked the pollution migration to a certain extent, which was related to the characteristics of high clay and silt content, low sand content and poor permeability.
  • [1]
    张孝飞,陈樯,邓绍坡,等.污染场地修复过程中挥发性有机物(VOCs)污染研究进展[J].生态与农村环境学报,2015,31(6):831-834.
    [2]
    ANNIKA S F, CHARLOTTE R, CHRISTENSEN A G, et al. Zvi-clay remediation of a chlorinated solvent source zone, skuldelev, denmark:1. site description and contaminant source mass reduction[J]. Journal of Contaminant Hydrology, 2012, 140/141:56-66.
    [3]
    陈鸿汉,谌宏伟,何江涛,等.污染场地健康风险评价的理论和方法[J].地学前缘,2006,13(1):216-223.
    [4]
    KAŠTÁNEK F, DEMNEROVÁ K, PAZLAROVÁ J, et al. Biodegradation of polychlorinated biphenyls and volatile chlorinated hydrocarbons in contaminated soils and ground water in field condition[J]. International Biodeterioration, 1999, 44(1):39-47.
    [5]
    CHARLOTTE S, NEAL D D, MARIA H H, et al. Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface-a critical review[J]. Water Research, 2011, 45(9):2701-2723.
    [6]
    马长文,仵彦卿,孙承兴.受氯代烃类污染的地下水环境修复研究进展[J].环境保护科学,2007,33(3):23-25.
    [7]
    苏安琪,韩璐,晏井春,等.基于保护健康和水环境的氯代烃类污染场地地下水风险评估[J].环境工程,2018,36(7):138-143.[8] 高尚,王磊,龙涛,等.污染地块中高密度非水相液体(DNAPLs)迁移特征及判定调查技术研究进展[J].生态与农村环境学报,2018,34(4):289-299.[9] 陆强.上海某典型行业土壤和地下水中氯代烃的迁移转化规律及毒性效应研究[D].上海:华东理工大学,2016.[10] 朱瑞利.上海某污染场地地下水中三氯甲烷的自然衰减机制研究[D].上海:华东理工大学,2014.[11] 唐小亮.挥发性氯代烃类化合物污染场地健康风险评价与修复技术筛选研究[D].上海:南京农业大学,2011.[12] CHENG S Y, BRYANT R, DOERR S H, et al. Investigation of surface properties of soil particles and model materials with contrasting hydrophobicity using atomic force microscopy[J]. Environmental Science&Technology, 2009, 43(17):6500-6506.[13] ROBERT G R, JAMES E S, DEBBIE S S, et al. Desorption behavior of carbon tetrachloride and chloroform in contaminated low organic carbon aquifer sediments[J]. Chemosphere, 2010, 79(8):807-813.[14] SCHUG K A, HILDENBRAND Z L. Advances in chemical pollution, environmental management and protection[M]. Cambridge, MA, United States:Zoe Kruze, 2017.[15] CABBAR H C. Effects of humidity and soil organic matter on the sorption of chlorinated methanes in synthetic humic-clay complexes[J]. Journal of Hazardous Materials, 1999, 68(3):217-226.[16] 天津市生态环境局、天津市规划和自然资源局.市生态环境局市规划和自然资源局关于印发《天津市建设用地土壤污染风险管控和修复名录的通知》[Z].2019. http://sthj.tj.gov.cn/YWGZ7406/HJGL7886/TRHJGL8439/202203/t20220303_5819561.html.[17] 生态环境部.建设用地土壤污染风险管控和修复监测技术导则:HJ 25.2-2019[S].2019.[18] 国家环境保护总局.土壤环境监测技术规范:HJ/T 166-2004[S].2004.[19] 天津市建设管理委员会.天津市地基土层序划分技术规程:DB/T 29-191-2009[S].2009.[20] 生态环境部.土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600-2018[S].2018.[21] 章霖之,王荣俊,丁倩.常州某农药生产场地土壤中挥发性有机物污染状况调查[J].中国环境监测,2012,28(3):67-71.[22] 邓强.氯代烃芳香烃混合污染物在含水层介质中的竞争吸附机理研究[D].石家庄:河北地质大学,2018.
  • Relative Articles

    [1]CHEN Yating, ZHAO Xinyu, LI Yanhong, ZHANG Chuanyan, DANG Qiuling, XI Beidou. ENVIRONMENTAL BEHAVIOR AND RESTORATION PROGRESS OF EMERGING CONTAMINANTS IN CONTAMINATED SITES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 166-176. doi: 10.13205/j.hjgc.202401022
    [2]FAN Maoqing, WU Qiao, ZHAO Fang, ZENG Ming, GU Huiwen, WANG Yushang. ANALYSIS OF OZONE POLLUTION SITUATION, CAUSES AND COUNTERMEASURES IN CHANGSHA IN 2019—2021[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 115-121. doi: 10.13205/j.hjgc.202403014
    [3]QIAN Jiangbo, CHEN Di, WANG Xiahui, LI Xilin, HUANG Guoxin. RISK DIAGNOSIS OF HEAVY METAL POLLUTION IN REGIONAL SOIL BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 296-303. doi: 10.13205/j.hjgc.202312037
    [4]TENG Keyan, SUN Hongtu, ZENG Yufeng, ZHENG Guofeng. DERIVATION OF RISK SCREENING VALUES FOR RADIOACTIVE CONTAMINATION OF SOIL IN NUCLEAR FACILITY DECOMMISSIONING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 235-240. doi: 10.13205/j.hjgc.202307032
    [5]ZHAO Bin, PENG Tianyue, ZHANG Hao, WANG Liuwei, ZONG Wenjing, HOU Deyi. CHARACTERISTICS IDENTIFICATION AND HEALTH RISK ASSESSMENT OF MERCURY CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 205-212. doi: 10.13205/j.hjgc.202304028
    [6]CHE Kai, HAN Zhongge, YU Jinxing, CHEN Chongming, LIU Songtao, GU Xingjia. EXPERIMENTAL STUDY ON MICROWAVE DESORPTION OF SOIL CONTAMINATED BY INSULATING OIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 127-131,138. doi: 10.13205/j.hjgc.202202020
    [7]LI Huaxiang, ZHAO Xiujun, LIU Yinghua, LUO Zhiji. SPATIAL DISTRIBUTION AND RISK ASSESSMENT OF TUNGSTEN POLLUTION OF SOIL IN A SMELTING SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 141-147. doi: 10.13205/j.hjgc.202201021
    [8]LI Anna, WANG Hui, LIU Qiangnan, LI Taiping. DISTRIBUTION CHARACTERISTICS AND RISK ASSESSMENT OF SOIL POLLUTANTS IN AN EXPLOSION SITE OF A CHEMICAL PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 189-198. doi: 10.13205/j.hjgc.202211027
    [9]ZHANG Shao-kang, GONG Xiao-feng, LIN Yuan, WU Li, XIONG Jie-qian, WU Jing-lin. REMEDIATION OF Cd CONTAMINATED SOIL BY ARTIFICIAL STRUVITE COMBINED WITH RYEGRASS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 193-198. doi: 10.13205/j.hjgc.202109027
    [10]JIN Xiao-dan, TIAN Yong-qiang, WU Hao, CHEN He-xiao, WANG Xing-run, CHENG Jin-ping. CHARACTERISTICS OF CHROMIUM POLLUTION AND ITS INFLUENCING FACTORS IN LEATHER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 206-211,219. doi: 10.13205/j.hjgc.202112031
    [11]PENG Jin-jin, LI Lin, ZHENG Chuan, HU Ling, WU Xiao-xu. ANALYSIS OF DISTRIBUTION CHARACTERISTICS OF BTEX IN A DYESTUFF CHEMICAL SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 187-194. doi: 10.13205/j.hjgc.202104028
    [12]LIANG Jing, WANG Shi-jie, ZHANG Wen-yu, ZHANG Dan, ZHANG Yuan, ZOU Hui. REVIEW ON CONTAMINATED SITE REMEDIATION TECHNOLOGIES IN THE USA AND THEIR REVELATION TO CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026
    [13]ZHENG Ying-yi, LIU Jie, JIANG Ping-ping, YOU Shao-hong, ZHOU Shu-lin, YU Guo. POLLUTION ASSESSMENT OF HEAVY METALS IN FARMLAND SOILS AROUND AN ABANDONED SMELTER IN HECHI, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 238-245. doi: 10.13205/j.hjgc.202105033
    [14]CHEN Mei-feng, LI Xin-li, YANG Pei-lin, LUO Qian, QIN Fan-xin. STABILIZATION OF AS CONTAMINATED SOILS BY MODIFIED NANO-TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 222-227. doi: 10.13205/j.hjgc.202010035
    [15]LIN Xiao-yan, LIANG Peng, XIONG Yun-wu, WANG Yue-ling, LI Shi-gang, WU Sheng-chun, LI Shu, XU Jian-xin. REMEDIATION OF SOIL CONTAMINATED WITH SALT, ZINC AND MANGANESE BY LANDSCAPE PLANTS AND MODIFIER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 140-146. doi: 10.13205/j.hjgc.202002019
    [16]CHEN Si-li, YI Zhong-yuan, WANG Ji, PAN Chao-yi, CHANG Sha, GUO Qing-wei, ZHOU Jun-guang, SUN Lan. CASE STUDY ON REMEDIATION OF DIESEL CONTAMINATED SOIL AND GROUNDWATER BY ELUENT-EXTRACTION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 178-182. doi: 10.13205/j.hjgc.202001029
    [18]Liu Zengjun, Xia Xu, Zhang Xu, Li Guanghe, Jiang Lin. STUDY OF REMEDIATION AND LONG-TERM EFFECT OF AGENTS ON CHROMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 160-163. doi: 10.13205/j.hjgc.201502036
    [19]Liu Xiao'er. POLLUTION AND ENVIRONMENTAL QUALITY EVALUATION FOR SOIL IN THE OIL PRODUCTION ZONES OF AN OIL FIELD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 126-129. doi: 10.13205/j.hjgc.201502028
    [20]Zhu Wenyuan Song Zixin Li Shefeng Liu Gengsheng Tao Ling Xu Xinying Qin Hui, . RESEARCH ON LOGISTICS ORGANIZATION IN PROCESS OF CONTAMINATED SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 164-167. doi: 10.13205/j.hjgc.201502037
  • Cited by

    Periodical cited type(9)

    1. 周礼洋. 典型有机化工厂污染地块氯代烃分布特征及基于蒙特卡洛模拟的风险评估. 环境工程技术学报. 2024(01): 98-111 .
    2. 周礼洋. 新污染物二氯甲烷污染场地的微生物群落与环境因子关系. 环境生态学. 2024(03): 119-127 .
    3. 牛建敏,臧翀,王政华,周敏,潘文洁,李红艳. 强化常温解吸技术修复氯代烃污染土壤的工程应用. 环境工程. 2024(05): 107-113 . 本站查看
    4. 李晓曼. 典型有机化工污染地块DNAPL分布特征及健康风险评价. 皮革制作与环保科技. 2024(09): 35-38 .
    5. 杨梦凡,李彦希,程伟,王笑岩,安学超. 典型灯具企业场地土壤污染特征及健康风险评估. 四川环境. 2024(05): 154-160 .
    6. 邹惠,刘凯,李彦希,王成业,张文毓,叶渊,朱焰. 基于活性炭复合材料原位修复氯代烃污染地下水的研究进展. 能源与环保. 2023(02): 180-189 .
    7. 从辉,牛真茹,张有军,曲为贵,张佳,袁霆. 某典型污染场地地下水中氯代烃类的污染分布及迁移转化分析. 环境污染与防治. 2023(10): 1343-1351 .
    8. 严青云,杨耀帅,罗海鲲,巫静,章生卫,李彦文,向垒,莫测辉. 典型塑料生产加工地块土壤邻苯二甲酸酯及多环芳烃污染特征和健康风险. 农业环境科学学报. 2022(02): 357-366 .
    9. 花思雨. 土壤污染风险分层评估方法在氯代烃深层污染场地中的应用. 广东化工. 2022(14): 122-127 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (444) PDF downloads(7) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return