Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Ding Jing, Lei Yang. RESEARCH ON SEMI-AEROBIC BIOREACTOR LANDFILL SYSTEM:LEACHATE CHARACTERISTICS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 6-10. doi: 10.13205/j.hjgc.201503002
Citation: LI Geng, LI Haibo, LI Yinghua, CHEN Xi. SOLIDIFICATION/STABILIZATION OF As IN SOIL USING BIOCHAR LOADED WITH FERRIC MANGANESE BINARY OXIDES(FMBO)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 118-125. doi: 10.13205/j.hjgc.202203018

SOLIDIFICATION/STABILIZATION OF As IN SOIL USING BIOCHAR LOADED WITH FERRIC MANGANESE BINARY OXIDES(FMBO)

doi: 10.13205/j.hjgc.202203018
  • Received Date: 2021-10-09
    Available Online: 2022-07-07
  • The chemical forms of arsenic (As) in soil environment were sophisticated, and there was a defect in the treatment of different forms of As with conventional solidification and stabilization materials. We integrated the surface adsorption of biochar (BC), pore filling, electrostatic attraction, complexation and co-precipitation oxidation-reduction of ferric manganese binary oxides (FMBO), then a new functional material BCFM was prepared and stabilized with Portland cement. The effect of key parameters on treatment effect was discussed by response surface method. The results showed that when the ratio of BCFM to Portland cement was 9.88% and 8.80%, and the curing time was 20.53 days, the minimum leaching concentration of As was 0.055 mg/L, the exchangeable state proportion was reduced from 4% to 0.5%, the residual state proportion was increased from 77% to 87%, and the unconfined compressive strength exceeded 50 kPa. It was speculated that the curing and stabilization mechanism of BCFM was the combination of Fe-O(H)-As coprecipitation, Mn-O(H)-As oxidation and BC function. The results of this study provide a new technical scheme for long-term curing and stabilization of As.
  • [1]
    LI L F, ZHU C X, LIU X S, et al. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability[J]. Environmental Science and Pollution Research, 2018, 25(34):34091-34102.
    [2]
    陈世宝,王萌,李杉杉,等.中国农田土壤重金属污染防治现状与问题思考[J].地学前缘, 2019, 26(6):35-41.
    [3]
    CHEN S B, WANG M, LI S S, et al. Current status of and discussion on farmland heavy metal pollution prevention in China[J]. Earth Science Frontiers, 2019, 26(6):35-41.
    [4]
    陶雪,杨琥,季荣,等.固定剂及其在重金属污染土壤修复中的应用[J].土壤, 2016, 48(1):1-11.
    [5]
    柳秀颖,黄永炳,王丽丽,等.钛改性锰矿的除砷效果及机理研究[J].环境工程, 2011, 29(6):46-49.
    [6]
    HAN H, HU S, LU C, et al. Inhibitory effects of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis[J]. Bioresource Technology, 2016,218:134-139.
    [7]
    宋宜,王华伟,吴雅静,等.三价铁促进生物氧化锰稳定土壤砷的效果和机制[J].环境科学学报, 2020, 40(4):1460-1466.
    [8]
    HARTLEY W, EDWARDS R, LEPP N W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils As evaluated by short-and long-term leaching tests[J]. Environmental Pollution, 2004,131(3):495-504.
    [9]
    WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2):309-323.
    [10]
    XIAO J G, LIU X, XIAO W, et al. Study on stabilization/solidification effect and influencing factors of high concentration arsenic residue[J]. Energy Conservation and Environmental Protection, 2018,294(12):76-77.
    [11]
    ALAM M G M, TOKUNAGA S, MAEKAWA T. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate[J]. Chemosphere, 2001, 43(8):1035-1041.
    [12]
    费杨,阎秀兰,李永华.铁锰双金属材料在不同pH条件下对土壤As和重金属的稳定化作用[J].环境科学,2018,39(3):1430-1437.
    [13]
    KOMAREK M, VANEK A, ETTLER V. Chemical stabilization of metals and arsenic in contaminated soils using oxides:a review[J]. Environmental Pollution,2013, 172(1):9-22.
    [14]
    HE Z F, LI Z Y, ZHANG Q Y, et al. Simultaneous remediation of As (Ⅲ) and dibutyl phthalate (DBP) in soil by a manganese-oxidizing bacterium and its mechanisms[J]. Chemosphere, 2019, 220(4):837-844.
    [15]
    YING S C, KOCAR B D, FENDORF S. Oxidation and competitive retention of arsenic between iron and manganese oxides[J]. Geochimica Cosmochimica Acta, 2012, 96(11):294-303.
    [16]
    XU F N, CHEN H X, DAI Y X, et al. Arsenic adsorption and removal by a new starch stabilized ferromanganese binary oxide in water[J]. Journal of Environmental Management, 2019, 245(9):160-167.
    [17]
    王建燕,张传巧,陈静,等.新型铁铜锰复合氧化物颗粒吸附剂As (Ⅲ)吸附行为与机制研究[J].环境科学学报, 2019, 39(8):2575-2585.
    [18]
    李健文. ICP-OES测定三种方法消解土壤中重金属含量的研究[J].广州化学, 2019,44(3):35-40.
    [19]
    TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851.
    [20]
    SUN Q, LIU C, ALVES M E, et al. The oxidation and sorption mechanism of Sb on MnO2[J]. Chemical Engineering Journal, 2018, 342(15):429-437.
    [21]
    ZHANG G S, QU J H, LIU H J, et al. Removal mechanism of As (Ⅲ) by a novel FMBO binary oxide adsorbent:oxidation and sorption[J]. Environmental Science&Technology, 2007, 41(13):4613-4619.
    [22]
    MANNING B A, FENDORF S E, BENJAMIN B, et al. Arsenic (Ⅲ) Oxidation and Arsenic (Ⅴ) Adsorption eactions on Synthetic Birnessite[J]. Environmental Science&Technology, 2002, 36(5):976-981.
    [23]
    LI B, ZHOU S, WEI D, et al. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO2:pot experiment and field application[J]. Science of the Total Environment, 2019, 650(part 1):546-556.
    [24]
    WANG H W, LV Z J, SONG Y, et al. Adsorptive removal of Sb (Ⅲ) from wastewater by environmentally-friendly biogenic manganese oxide (BMO) materials:efficiency and mechanisms[J]. Process Safety and Environmental Protection, 2019, 124:223-230.
    [25]
    HE M, WANG N, LONG X, et al. Antimony speciation in the environment:recent advances in understanding the biogeochemical processes and eco-logical effects[J]. Journal of Environmental Sciences, 2019, 75:14-39.
    [26]
    ZENG M, LIAO B H, ZHANG Y, et al. Chemical extraction remediation of As contaminated soil by alkali solution[J]. Journal of Safety and Environment, 2010, 10(3):39-41.
    [27]
    吴和秋,侯钦宣,张英.含铁介质用于修复砷污染土壤研究综述[J].中国土壤与肥料, 2018(2):13-21,66.
    [28]
    梁婷,李莲芳,朱昌雄,等.铈锰改性生物炭对土壤As的固定效应[J].环境科学, 2019, 40(11):5114-5123.
  • Relative Articles

    [1]XIE Wei, YUAN Jiajia, YUAN Huizhou, KE Shuizhou. ADSORPTION PERFORMANCE AND MECHANISM OF SULFAMETHOXAZOLE BY ACID/ALKALI MODIFIED CANNA INDICA BIOCHARS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 201-209. doi: 10.13205/j.hjgc.202412024
    [2]WANG Xingming, WANG Ying, FAN Tingyu, CHU Zhaoxia, DONG Zhongbing, DONG Peng. PATHWAYS OF HEAVY METALS ABSORPTION BY EARTHWORMS IN SLUDGE VERMI COMPOSTING ENHANCED BY RICE HUSK CHARCOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 147-154. doi: 10.13205/j.hjgc.202410018
    [3]LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010
    [4]CHEN Long, LI Kai, TU Zhi, ZHOU Yu, ZHANG Jilong, MI Baobin, WU Fangfang. ADSORPTION PERFORMANCE AND MECHANISM OF Zn2+ ON MICROWAVE-PREPARED ALKALI LIGNIN BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 100-108. doi: 10.13205/j.hjgc.202308013
    [5]XU Wenjun, HUANG Dandan, LIANG Mingshen, XU Qiyong. EFFECT OF HYDROGEN SUFIDE ON METHANE OXIDATION OF BIOCHAR-AMENDED LANDFILL COVER SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 120-126. doi: 10.13205/j.hjgc.202202019
    [6]JIANG Yuzhu, HUI Helong, LIU Hongyi, DING Guangchao, LU Wenyi, LI Songgeng. STUDY ON THE EFFECTIVENESS OF TEXTILE DYING SLUDGE BIOCHAR IN TREATING REFRACTORY ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 32-39. doi: 10.13205/j.hjgc.202210005
    [7]WANG Ziting, ZOU Jiawei, ZHOU Jiti, JIN Ruofei. PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 98-104. doi: 10.13205/j.hjgc.202211014
    [8]WANG Yu-hang, YU Wei, ZHAO Si-yu, LIU Shan, JIANG Xiao-hui, LI Qi. ADSORPTION OF ANTIBIOTIC DRUGS IN WATER ENVIRONMENT BY MODIFIED BIOCHAR:A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 91-99,134. doi: 10.13205/j.hjgc.202112014
    [9]DAI Li-ping, ZHU Han-quan, KE Xiong, CHEN Ri-yao, LIU Yao-xing. REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION USING BIPOLAR MEMBRANE ELECTRODIALYSIS TECHNIQUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 89-95. doi: 10.13205/j.hjgc.202111011
    [10]YANG Liu-yang, WANG Lei, CUI Chang-hao, LIU Mei-jia, LI Li, YAN Da-hai. TRANSFORMATION OF Cr CHEMICAL FORMS IN CEMENT KILNS CO-PROCESSING Cr CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 185-190. doi: 10.13205/j.hjgc.202110026
    [11]ZHOU Jun, LI Yan, GUAN Yi-dong, HUANG Li-dong, JIN Hong-mei, XIAO Qiong, SONG Jiang-sheng. MIXED SORPTION OF THREE AQUEOUS SULFONAMIDES ONTO THE BIOCHAR DERIVED FROM POPLAR WOOD CHIPS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 1-6,13. doi: 10.13205/j.hjgc.202103001
    [12]LI Sheng-hong, ZHU Fen-fen. COMPARISON AND CHARACTERISTICS OF BIOCHAR BY SLUDGE AND DEGREASING-SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 154-159,192. doi: 10.13205/j.hjgc.202109022
    [13]WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
    [14]LI Rong, XU Duo, WEI Jie, WANG Dong-tian. PREPARATION OF ADSORBENT BY COMBINED DRINKING WATER TREATMENT SLUDGE AND POWDERED ACTIVATED CARBON AND ITS AMMONIUM REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 95-100,112. doi: 10.13205/j.hjgc.202009016
    [15]ZHAO Jie, HE Yu-hong, ZHANG Xiao-ming, LI Qi, YANG Wei-chun. EFFECT ON Cr(Ⅵ) ADSORPTION PERFORMANCE OF ACID-BASE MODIFIED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 28-34. doi: 10.13205/j.hjgc.202006005
    [16]LI Pei-pei, ZHOU Yu-zhou, XIANG Yu-jia, ZHOU Yao-yu, ZHU Hong-mei, RONG Xiang-min. ADSORPTION PERFORMANCE OF P-ARSANILIC ACID IN AQUEOUS SOLUTION BY BIOCHAR SUPPORTED MANGANESE FERRATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 75-79,86. doi: 10.13205/j.hjgc.202001011
    [17]LIU Ling-yan, CHEN Shuang-rong, SONG Xue-yan, WANG Sheng-nan, YU Jun-xia, LU Yi-feng. RESEARCH PROGRESS IN REMOVAL OF PHOSPHATE FROM WATER BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 91-97. doi: 10.13205/j.hjgc.202011015
    [18]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [19]FANG Wei, JIANG Xian-ying, LI Jing-shi, LUO Qi-jin. ADSORPTION CAPABILITY OF GRAPHENE/SiO2-POLYPYRROLE COMPOSITES FOR Cr(Ⅵ) IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 53-59. doi: 10.13205/j.hjgc.202011009
    [20]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
  • Cited by

    Periodical cited type(8)

    1. 陈至诚,邵铭炜,冯修平,林芳,余子健,刘希庭,宋姗姗,吴俊. 电导率作为排水管道水质特征指标的潜力分析. 净水技术. 2024(03): 152-158 .
    2. 郑海峰. 基于聚类算法的城市供排水水质检测系统. 自动化技术与应用. 2024(05): 62-66 .
    3. 刘宏志. 徐州市污水处理厂进水浓度低原因及对策探究. 山西建筑. 2024(13): 155-157 .
    4. 陈则宏. 基于电导率在线数据的雨水管网异常识别与诊断技术应用. 净水技术. 2024(12): 160-170 .
    5. 刘文强,郁达伟,郑利兵,朱利英,桂双林,易其臻,李昆,舒琴,郑江,甘正明,魏源送. 南昌某城市污水处理厂进水浓度低成因分析研究. 环境科学学报. 2022(09): 141-150 .
    6. 杨婷婷,李萌,李志一,高兴桦,杨翔宇,赵冬泉. 系统化监测方法在污水处理提质增效中的应用. 环境工程. 2022(12): 239-243+223 . 本站查看
    7. 周乙新,李激,王燕,郑凯凯,王小飞,支尧. 城镇污水处理厂低浓度进水原因分析及提升措施. 环境工程. 2021(12): 25-30 . 本站查看
    8. 牛越,高燚,王迪迪,张景炳,陈加波,王洪臣. 青岛市团岛排水系统污水水质水量波动特征解析. 环境工程. 2021(12): 18-24 . 本站查看

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 86.3 %META: 86.3 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.9 %其他: 20.9 %China: 0.8 %China: 0.8 %上海: 3.2 %上海: 3.2 %东莞: 0.4 %东莞: 0.4 %临汾: 0.8 %临汾: 0.8 %云浮: 0.4 %云浮: 0.4 %伊利诺伊州: 1.2 %伊利诺伊州: 1.2 %保定: 1.6 %保定: 1.6 %兰州: 1.2 %兰州: 1.2 %北京: 5.2 %北京: 5.2 %十堰: 0.8 %十堰: 0.8 %厦门: 0.4 %厦门: 0.4 %台州: 0.4 %台州: 0.4 %哈尔滨: 1.2 %哈尔滨: 1.2 %天津: 0.4 %天津: 0.4 %安康: 0.4 %安康: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.8 %广州: 0.8 %张家口: 1.6 %张家口: 1.6 %成都: 0.8 %成都: 0.8 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.2 %杭州: 1.2 %武汉: 1.2 %武汉: 1.2 %济南: 0.4 %济南: 0.4 %济源: 0.8 %济源: 0.8 %湖州: 0.8 %湖州: 0.8 %漯河: 1.2 %漯河: 1.2 %漳州: 0.4 %漳州: 0.4 %石家庄: 2.0 %石家庄: 2.0 %福州: 0.8 %福州: 0.8 %芒廷维尤: 16.9 %芒廷维尤: 16.9 %芝加哥: 1.6 %芝加哥: 1.6 %苏州: 0.4 %苏州: 0.4 %衢州: 1.2 %衢州: 1.2 %西宁: 21.3 %西宁: 21.3 %运城: 2.8 %运城: 2.8 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %重庆: 0.8 %重庆: 0.8 %长治: 0.4 %长治: 0.4 %其他China上海东莞临汾云浮伊利诺伊州保定兰州北京十堰厦门台州哈尔滨天津安康常州常德广州张家口成都拉贾斯坦邦晋城朝阳杭州武汉济南济源湖州漯河漳州石家庄福州芒廷维尤芝加哥苏州衢州西宁运城遵义邯郸重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (147) PDF downloads(3) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return