Citation: | QIU Fuguo, TONG Shiyu, WANG Xiaoqian. RESEARCH PROGRESS ON OCCURRENCE STATUS AND ECOLOGICAL HAZARDS OF MICROPLASTICS IN WATER ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 221-228. doi: 10.13205/j.hjgc.202203032 |
[1] |
KATAOKA T, NIHEI Y, KUDOU K, et al. Assessment of the sources and inflow processes of microplastics in the river environments of Japan[J]. Environmental Pollution, 2019, 244:958-965.
|
[2] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea:where is all the plastic?[J]. Science, 2004, 304(5672):838.
|
[3] |
HAAVE M, LORENZ C, PRIMPKE S, et al. Different stories told by small and large microplastics in sediment-first report of microplastic concentrations in an urban recipient in Norway[J]. Marine Pollution Bulletin, 2019, 141:501-513.
|
[4] |
PRATA J C, COSTA J P D, LOPES I, et al. Effects of microplastics on microalgae populations:a critical review[J]. Science of the Total Environment, 2019, 665:400-405.
|
[5] |
WEERT S V, REDONDO-Hasselerharm P E, DIEPENS N J, et al. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes[J]. Science of the Total Environment, 2019, 654:1040-1047.
|
[6] |
BOTTERELL Z L R, BEAUMONT N, DORRINGTON T, et al. Bioavailability and effects of microplastics on marine zooplankton:a review[J]. Environmental Pollution, 2018, 245:98-110.
|
[7] |
高文杰,卫新来,吴克.环境中微塑料的研究进展[J].塑料科技,2021,49(2):111-116.
|
[8] |
VANDERMEERSCH G, VAN CAUWENBERGHE L, JANSSEN C R, et al. A critical view on microplastic quantification in aquatic organisms[J]. Environmental Research, 2015, 143(Pt B):46-55.
|
[9] |
VIANELLO A, BOLDRIN A, GUERRIERO P, et al. Microplastic particles in sediments of Lagoon of Venice, Italy:first observations on occurrence, spatial patterns and identification[J]. Estuarine Coastal&Shelf Science, 2013, 130(3):54-61.
|
[10] |
CHEUNG P K, FOK L. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China[J]. Water Research, 2017, 122:53-61.
|
[11] |
CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 2016, 91:174-182.
|
[12] |
RODRIGUEZ-SEIJO A, LOURENÇO J, ROCHA-SANTOS T A P, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché[J]. Environmental Pollution, 2017, 220:495-503.
|
[13] |
STEINMETZ Z, WOLLMANN C, SCHAEFER M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550:690-705.
|
[14] |
ALIMI O S, FARNER B J, HERNANDEZ L M, et al. Microplastics and Nanoplastics in Aquatic Environments:aggregation, Deposition, and Enhanced Contaminant Transport[J]. Environmental science&technology, 2018, 52(4):1704-1724.
|
[15] |
SCOTT L, CHRIS S, ALISTAIR B. Occurrence, degradation, and effect of polymer-based materials in the environment[J]. Reviews of Environmental Contamination and Toxicology, 2014, 227:1-53.
|
[16] |
LAW K L, MORÉT-FERGUSON S E, GOODWIN D S, et al. Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set[J]. Environmental Science&Technology, 2014, 48(9):4732-4738.
|
[17] |
LEBRETON L, SLAT B, FERRARI F, et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic[J]. Scientific Reports, 2018, 8(1).
|
[18] |
ZHANG W W, ZHANG S F, WANG J Y, et al. Microplastic pollution in the surface waters of the Bohai Sea, China[J]. Environmental Pollution, 2017, 231:541-548.
|
[19] |
CAI M G, HE H X, LIU M Y, et al. Lost but can't be neglected:huge quantities of small microplastics hide in the South China Sea[J]. Science of the Total Environment, 2018, 633:1206-1216.
|
[20] |
白璐,刘宪华,陈燕珍,等.天津近岸海域微塑料污染现状分析[J].环境化学,2020,39(5):1161-1168.
|
[21] |
ZHANG C N, WANG S D, SUN D, et al. Microplastic pollution in surface water from east coastal areas of Guangdong, South China and preliminary study on microplastics biomonitoring using two marine fish[J]. Chemosphere, 2020, 256:127202.
|
[22] |
KAZOUR M, JEMAA S, ISSA C, et al. Mcicroplastics pollution along the Lebanese coast (Eastern Mediterranean Basin):occurrence in surface water, sediments and biota samples[J]. Science of the Total Environment, 2019, 696:133933.
|
[23] |
MORGANA S, GHIGLIOTTI L, ESTÉVEZ-Calvar N, et al. Microplastics in the arctic:a case study with sub-surface water and fish samples off Northeast Greenland[J]. Environmental Pollution, 2018, 242:1078-1086.
|
[24] |
FRIAS J, OTERO V, SOBRAL P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters[J]. Marine Environmental Research, 2014, 95:89-95.
|
[25] |
SIEGFRIED M, KOELMANS A A, BESSELING E, et al. Export of microplastics from land to sea:a modelling approach[J]. Water Research, 2017, 127:249-257.
|
[26] |
朱莹,曹淼,罗景阳,等.微塑料的环境影响行为及其在我国的分布状况[J].环境科学研究, 2019, 32(9):1437-1447.
|
[27] |
WANG W F, NDUNGU A W, LI Z, et al. Microplastics pollution in inland freshwaters of China:a case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575:1369-1374.
|
[28] |
DING L, MAO R F, GUO X T, et al. Microplastics in surface waters and sediments of the Wei River, in the northwest of China[J]. Science of the Total Environment, 2019, 667:427-434.
|
[29] |
DI M X, WANG J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616/617:1620-1627.
|
[30] |
YAN M T, NIE H Y, XU K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China[J]. Chemosphere, 2019, 217:879-886.
|
[31] |
SU L, XUE Y G, LI L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216:711-719.
|
[32] |
YUAN W K, LIU X N, WANG W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170:180-187.
|
[33] |
SOEUN E, SANG H H, YOUNG K S, et al. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea[J]. Water Research, 2019, 160:228-237.
|
[34] |
ALAM F C, SEMBIRING E, MUNTALIF B S, et al. Microplastic distribution in surface water and sediment river around slum and industrial area (case study:ciwalengke River, Majalaya district, Indonesia)[J]. Chemosphere, 2019, 224:637-645.
|
[35] |
KAPP K J, YEATMAN E. Microplastic hotspots in the Snake and Lower Columbia rivers:a journey from Greater Yellowstone Ecosystem to the Pacific Ocean[J]. Environment Pollution, 2018, 241:1082-1090.
|
[36] |
FISCHER E K, PAGLIALONGA L, CZECH E, et al. Microplastic pollution in lakes and lake shoreline sediments:a case study on Lake Bolsena and Lake Chiusi (central Italy)[J]. Environmental Pollution, 2016, 213:648-657.
|
[37] |
MASON S A, GARNEAU D, SUTTON R, et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent[J]. Environmental Pollution, 2016, 218:1045-1054.
|
[38] |
汪文玲,龙邹霞,余兴光,等.厦门市筼筜污水处理厂中微塑料的特征研究[J].海洋环境科学, 2019, 38(2):205-210.
|
[39] |
白濛雨,赵世烨,彭谷雨,等.城市污水处理过程中微塑料赋存特征[J].中国环境科学, 2018, 38(5):1734-1743.
|
[40] |
陈瑀,张宴,苏良湖,等.南京城市污水处理厂中微塑料的赋存特征[J].中国环境科学, 2020, 40(9):3835-3841.
|
[41] |
YANG L B, LI K X, CUI S, et al. Removal of microplastics in municipal sewage from China's largest water reclamation plant[J]. Water Research, 2019, 155:175-181.
|
[42] |
BAYO J, OLMOS S, LÓPEZ-Castellanos J. Microplastics in an urban wastewater treatment plant:the influence of physicochemical parameters and environmental factors[J]. Chemosphere, 2020, 238:124593.
|
[43] |
GIES E A, LENOBLE J L, NOËL M, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada[J]. Marine Pollution Bulletin, 2018,133:553-561.
|
[44] |
TALVITIE J, MIKOLA A, SETÄLÄ O, et al. How well is microlitter purified from wastewater?:a detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant[J]. Water Research, 2017, 109:164-172.
|
[45] |
ZIAJAHROMI S, DRAPPER D, HORNBUCKLE A, et al. Microplastic pollution in a stormwter floating treatment wetland:Detection of tyre particles in sediment[J]. Science of the Total Environment, 2020, 713:136356.
|
[46] |
CHEUNG P K, HUNG P L, FOK L. River microplastic contamination and dynamics upon a rainfall event in Hong Kong, China[J]. Environmental Processes, 2019, 6(1):253-264.
|
[47] |
LIU F, VIANELLO A, VOLLERTSEN J. Retention of microplastics in sediments of urban and highway stormwater retention ponds[J]. Environmental Pollution, 2019, 255:113335.
|
[48] |
LI S C, LIU H, GAO R, et al. Aggregation kinetics of microplastics in aquatic environment:complex roles of electrolytes, pH, and natural organic matter[J]. Environmental Pollution, 2018, 237:126-132.
|
[49] |
DONG S N, CAI W W, XIA J H, et al. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment:complex roles of electrolytes, pH and humic acid[J]. Environmental Pollution, 2021, 268(PB):115828.
|
[50] |
CAI L, HU L L, SHI H H, et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics[J]. Chemosphere, 2018, 197:142-151.
|
[51] |
ONCSIK T, DESERT A, TREFALT G, et al. Charging and aggregation of latex particles in aqueous solutions of ionic liquids:towards an extended Hofmeister series[J]. Physical Chemistry Chemical Physics, 2016, 18(10):7511-7520.
|
[52] |
MAO Y F, LI H, HUANGFU X L, et al. Nanoplastics display strong stability in aqueous environments:insights from aggregation behaviour and theoretical calculations[J]. Environmental Pollution, 2020, 258:113760.
|
[53] |
SONG Z F, YANG X Y, CHEN F M, et al. Fate and transport of nanoplastics in complex natural aquifer media:effect of particle size and surface functionalization[J]. Science of the Total Environment, 2019, 669:120-128.
|
[54] |
LIU Y J, HUANG Z Q, ZHOU J N, et al. Influence of environmental and biological macromolecules on aggregation kinetics of nanoplastics in aquatic systems[J].Water Research, 2020, 186:116316.
|
[55] |
付东东,张琼洁,范正权,等.微米级聚苯乙烯对铜的吸附特性[J].中国环境科学,2019,39(11):4769-4775.
|
[56] |
LANG M F, YU X Q, LIU J H, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722:137762.
|
[57] |
杨杰,仓龙,邱炜,等.不同土壤环境因素对微塑料吸附四环素的影响[J].农业环境科学学报,2019,38(11):2503-2510.
|
[58] |
ZHOU Y F, YANG Y Y, LIU G H, et al. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments:the roles of water pH, lead ions, natural organic matter and phenanthrene[J]. Water Research, 2020, 184:116209.
|
[59] |
刘学敏.微塑料与典型环境内分泌干扰物的界面行为和作用机制研究[D].上海:华东师范大学,2020.
|
[60] |
LIU J, ZHANG T, TIAN L L, et al. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand[J]. Environmental Science&Technology, 2019, 53(10):5805-5815.
|
[61] |
ZHAO P, CUI L M, ZHAO W G, et al. Cotransport and deposition of colloidal polystyrene microplastic particles and tetracycline in porous media:the impact of ionic strength and cationic types[J]. Science of the Total Environment, 2021, 753:142064.
|
[62] |
DONG Z Q, ZHANG W, QIU Y P, et al. Cotransport of nanoplastics (NPs) with fullerene (C60) in saturated sand:effect of NPs/C60 ratio and seawater salinity[J]. Water Research, 2019, 148:469-478.
|
[63] |
薄军,陈梦云,方超,等.微塑料对海洋生物生态毒理学效应研究进展[J].应用海洋学学报,2018,37(4):594-600.
|
[64] |
王琼杰,张勇,陈雨,等.水体中微塑料的环境影响行为研究进展[J].化工进展,2020,39(4):1500-1510.
|
[65] |
WU Y M, GUO P Y, ZHANG X Y, et al. Effect of microplastics exposure on the photosynthesis system of freshwater algae[J]. Journal of Hazardous Materials, 2019, 374:219-227.
|
[66] |
KALČÍKOVÁ G, ŽGAJNAR GOTVAJN A, KLADNIK A, et al. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor[J]. Environmental Pollution, 2017, 230:1108-1115.
|
[67] |
ZHANG C, CHEN X H, WANG J T, et al. Toxic effects of microplastic on marine microalgae Skeletonema costatum:interactions between microplastic and alagae[J]. Environmental Pollution, 2017, 220:1282-1288.
|
[68] |
BOYERO L, LÓPEZ-ROJO N, BOSCH J, et al. Microplastics impair amphibian survival, body condition and function[J]. Chemosphere, 2020, 244:125500.
|
[69] |
WANG Y, MAO Z, ZHANG M X, et al. The uptake and elimination of polystyrene microplastics by the brine shrimp, Artemia parthenogenetica,and its impact on its feeding behavior and intestinal histology[J]. Chemosphere, 2019, 234:123-131.
|
[70] |
ROCHMAN C M, KUROBE T, FLORES I, et al. Early warning signs of endo-crine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment[J]. Science of the Total Environment, 2014, 493(1):656-661.
|
[71] |
PRATA J C. Airborne microplastics:consequences to human health?[J]. Environmental Pollution, 2018, 234:115-126.
|
[72] |
VIANELLO A, JENSEN R L, LIU L,et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin[J]. Scientific Reports.
|
[73] |
ENYOH C E, VERLA A W, VERLA E N, et al. Airborne microplastics:a review study on method for analysis, occurrence, movement and risks[J]. Environmental Monitoring and Assessment, 2019, 191(11):668.
|
[74] |
PRATA J C. Airborne microplastics:consequences to human health?[J]. Environmental Pollution, 2018, 234, 115-126.
|
[75] |
YANG D Q, SHI H H, LI L, et al. Microplastic pollution in table salts from China[J]. Environmental Science&Technology, 2015, 49(22):13622-13627.
|
[76] |
YANG X G, WANG H, ZHANG L, et al. Marine algae facilitate transfer of microplastics and associated pollutants into food webs[J]. Science of the Total Environment, 2021, 787:147535.
|