Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MAO Yu, CHEN Zhuo, LU Yun, WU Qianyuan, WU Yinhu, HU Hongying. ADVANCES IN MICROBIAL INACTIVATION BY FERRATE AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 1-7. doi: 10.13205/j.hjgc.202204001
Citation: MAO Yu, CHEN Zhuo, LU Yun, WU Qianyuan, WU Yinhu, HU Hongying. ADVANCES IN MICROBIAL INACTIVATION BY FERRATE AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 1-7. doi: 10.13205/j.hjgc.202204001

ADVANCES IN MICROBIAL INACTIVATION BY FERRATE AND ITS INFLUENCING FACTORS

doi: 10.13205/j.hjgc.202204001
  • Received Date: 2021-07-10
    Available Online: 2022-07-06
  • Ferrate is a water treatment agent with multi-functions such as oxidation, disinfection and flocculation etc., which has broad application prospect. This paper reviewed the research progress of ferrate in disinfection, including the inactivation characteristics of ferrate to bacteria and viruses and its influencing factors, and compared it with other disinfection technologies in terms of disinfection efficacy, disinfection mechanism and the formation of disinfection byproducts. Ferrate had good inactivation effect on bacteria and viruses in different water bodies within a wide pH range. pH, temperature and organic matters were important factors affecting the disinfection effect of ferrate. The combination of ferrate and other disinfection technologies will be the focus of future research.
  • [1]
    WOOD R H. The heat, free energy and entropy of the ferrate (Ⅵ) ion[J]. Journal of the American Chemical Society, 1958, 80(9):2038-2041.
    [2]
    邵彬彬,乔俊莲,赵志伟,等.基于高铁酸盐的水污染控制技术研究进展[J].科学通报,2019,64(33):3401-3411.
    [3]
    SHARMA V K, ZBORIL R, VARMA R S. Ferrates:greener oxidants with multimodal action in water treatment technologies[J]. Accounts of Chemical Research, 2015, 48(2):182-191.
    [4]
    MURMANN R K, ROBINSON P R. Experiments utilizing FeO42- for purifying water[J]. Water Research, 1974, 8(8):543-547.
    [5]
    中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水卫生标准:GB 5749-2006[S].
    [6]
    JESSEN A, RANDALL A, REINHART D, et al. Effectiveness and kinetics of ferrate as a disinfectant for ballast water[J]. Water Environment Research, 2008, 80(6):561-569.
    [7]
    DAER S, GOODWILL J E, IKUMA K. Effect of ferrate and monochloramine disinfection on the physiological and transcriptomic response of Escherichia coli at late stationary phase[J]. Water Research, 2021, 189:116580.
    [8]
    BANDALA E R, MIRANDA J, BELTRAN M, et al. Wastewater disinfection and organic matter removal using ferrate (Ⅵ) oxidation[J]. Journal of Water and Health, 2009, 7(3):507-513.
    [9]
    JIANG J Q, PANAGOULOPOULOS A, BAUER M, et al. The application of potassium ferrate for sewage treatment[J]. Journal of Environmental Management, 2006, 79(2):215-220.
    [10]
    FRANKLIN G S. Novel Iron Precipitates[D]. London:Imperial College, 1998.
    [11]
    GOMBOS E, FELFOLDI T, BARKACS K, et al. Ferrate treatment for inactivation of bacterial community in municipal secondary effluent[J]. Bioresource Technology, 2012, 107:116-121.
    [12]
    MAKKY E A, PARK G S, CHOI I W, et al. Comparison of Fe (Ⅵ)(FeO42-) and ozone in inactivating Bacillus subtilis spores[J]. Chemosphere, 2011, 83(9):1228-1233.
    [13]
    GILBERT M B, WAITE T D, HARE C. Analytical notes:an investigation of the applicability of ferrate ion for disinfection[J]. Journal-American Water Works Association, 1976, 68(9):495-497.
    [14]
    CHO M, LEE Y, CHOI W, et al. Study on Fe (Ⅵ) species as a disinfectant:quantitative evaluation and modeling for inactivating Escherichia coli[J]. Water Research, 2006, 40(19):3580-3586.
    [15]
    JIANG J Q, WANG S, PANAGOULOPOULOS A. The role of potassium ferrate (Ⅵ) in the inactivation of Escherichia coli and in the reduction of COD for water remediation[J]. Desalination, 2007, 210(1/2/3):266-273.
    [16]
    ZHANG H Q, ZHENG L, LI Z, et al. One-step Ferrate (Ⅵ) treatment as a core process for alternative drinking water treatment[J]. Chemosphere, 2020, 242:125134.
    [17]
    KWON J H, KIM I K, PARK K Y, et al. Removal of phosphorus and coliforms from secondary effluent using ferrate (Ⅵ)[J]. KSCE Journal of Civil Engineering, 2014, 18(1):81-85.
    [18]
    ZHENG L, FENG H, LIU Y Q, et al. Chemically enhanced primary treatment of municipal wastewater with ferrate (Ⅵ)[J]. Water Environment Research, 2021, 93:817-825.
    [19]
    YUAN Z H, GUI H R, HE W L, et al. Bactericidal capability of potassium ferrate and its influencing factors in the process of treating micro-polluted water[C]//20093rd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2009:1-4.
    [20]
    MANOLI K, MAFFETTONE R, SHARMA V K, et al. Inactivation of murine norovirus and fecal coliforms by ferrate (Ⅵ) in secondary effluent wastewater[J]. Environmental Science&Technology, 2020, 54(3):1878-1888.
    [21]
    SCHINK T, WAITE T D. Inactivation of f2 virus with ferrate (Ⅵ)[J]. Water Research, 1980, 14(12):1705-1717.
    [22]
    KAZAMA F. Inactivation of coliphage Qβ by potassium ferrate[J]. FEMS Microbiology Letters, 1994, 118(3):345-349.
    [23]
    HU L H, PAGE M A, SIGSTAM T, et al. Inactivation of bacteriophage MS2 with potassium ferrate (Ⅵ)[J]. Environmental Science&Technology, 2012, 46(21):12079-12087.
    [24]
    WU X Y, TANG A X, BI X C, et al. Influence of algal organic matter of Microcystis aeruginosa on ferrate decay and MS2 bacteriophage inactivation[J]. Chemosphere, 2019, 236:124727.
    [25]
    WANG S C, SHAO B B, QIAO J L, et al. Application of Fe (Ⅵ) in abating contaminants in water:state of art and knowledge gaps[J]. Frontiers of Environmental Science&Engineering, 2021, 15(5):1-21.
    [26]
    KAMACHI T, KOUNO T, YOSHIZAWA K. Participation of multioxidants in the pH dependence of the reactivity of ferrate (Ⅵ)[J]. The Journal of Organic Chemistry, 2005, 70(11):4380-4388.
    [27]
    MANOLI K, NAKHLA G, RAY A K, et al. Enhanced oxidative transformation of organic contaminants by activation of ferrate (Ⅵ):possible involvement of Fe (Ⅴ)/Fe (Ⅳ) species[J]. Chemical Engineering Journal, 2017, 307:513-517.
    [28]
    DENG Y, JUNG C, LIANG Y M, et al. Ferrate (Ⅵ) decomposition in water in the absence and presence of natural organic matter (NOM)[J]. Chemical Engineering Journal, 2018, 334:2335-2342.
    [29]
    WANG Y H, WU Y H, TONG X, et al. Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation[J]. Water Research, 2019, 154:246-257.
    [30]
    JIANG J Q. Research progress in the use of ferrate (Ⅵ) for the environmental remediation[J]. Journal of Hazardous Materials, 2007, 146(3):617-623.
    [31]
    DELUCA S J, CHAO A C, SMALLWOOD JR C. Ames test of ferrate treated water[J]. Journal of Environmental Engineering, 1983, 109(5):1159-1167.
    [32]
    LI C, DONG F L, FENG L, et al. Bacterial community structure and microorganism inactivation following water treatment with ferrate (Ⅵ) or chlorine[J]. Environmental Chemistry Letters, 2017, 15(3):525-530.
    [33]
    DRIEDGER A M, RENNECKER J L, MARINAS B J. Sequential inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine[J]. Water Research, 2000, 34(14):3591-3597.
    [34]
    HUNT N K, MARINAS B J. Inactivation of Escherichia coli with ozone:chemical and inactivation kinetics[J]. Water Research, 1999, 33(11):2633-2641.
    [35]
    HUANG X, DENG Y, LIU S, et al. Formation of bromate during ferrate (Ⅵ) oxidation of bromide in water[J]. Chemosphere, 2016, 155:528-533.
    [36]
    ROUGE V, VON GUNTEN U, DE SENTENAC M L, et al. Comparison of the impact of ozone, chlorine dioxide, ferrate and permanganate pre-oxidation on organic disinfection byproduct formation during post-chlorination[J]. Environmental Science:Water Research&Technology, 2020, 6(9):2382-2395.
    [37]
    LIU J Q, LUJAN H, DHUNGANA B, et al. Ferrate (Ⅵ) pretreatment before disinfection:an effective approach to controlling unsaturated and aromatic halo-disinfection byproducts in chlorinated and chloraminated drinking waters[J]. Environment International, 2020, 138:105641.
    [38]
    JIANG Y J, GOODWILL J E, TOBIASON J E, et al. Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination[J]. Water Research, 2019, 156:110-124.
  • Relative Articles

    [1]MA Ruohan, LI Zhouyan, CAI Teng, NIU Chengxin, WANG Xueye, WANG Zhiwei. RESEARCH PROGRESS ON EMISSION AND CONTROL OF NON-CO2 GREENHOUSE GASES IN MUNICIPAL DRAINAGE NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 1-12. doi: 10.13205/j.hjgc.202411001
    [2]PAN Siyu, ZHANG Meiling. PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 61-68,85. doi: 10.13205/j.hjgc.202307009
    [3]XIONG Wei. A HIGH ORBIT HIGH SPATIOTEMPORAL RESOLUTION ATMOSPHERIC CARBON DIOXIDE MONITOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 1-8,123. doi: 10.13205/j.hjgc.202310001
    [4]ZHANG Li, WAN Xin, JIANG Han-ying, LI Xuan, XU Shao-dong, CAI Bo-feng. QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001
    [5]DONG Jin-chi, WENG Hui, PANG Ling-yun, CAI Bo-feng, LIU Hui, WANG Jin-nan, YANG Lu, XIA Chu-yu, CHEN Yang. MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 32-40. doi: 10.13205/j.hjgc.202110005
    [6]YANG Lu, YANG Xiu, LIU Hui, XIA Chu-yu, CAI Bo-feng, DONG Jin-chi, CHEN Yang. CARBON DIOXIDE EMISSION REDUCTION TECHNOLOGY SCREENING AND COST STUDY IN BUILDING SECTOR OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 41-49. doi: 10.13205/j.hjgc.202110006
    [7]ZHU Shu-ying, LIU Hui, DONG Jin-chi, CAI Bo-feng, HE Jie, YANG Lu, XIA Chu-yu, TANG Ling. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST CURVES FOR CEMENT INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 15-22. doi: 10.13205/j.hjgc.202110003
    [8]LI Sa, LIN Qian-guo, LIANG Xi, LEI Ming, JIANG Meng-fei, YANG Yong-zhi. TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 117-122,175. doi: 10.13205/j.hjgc.202109017
    [9]ZANG Hong-kuan, YANG Wei-shan, ZHANG Jing, WU Peng-cheng, CAO Li-bin, XU Ye. RESEARCH ON CARBON DIOXIDE EMISSIONS PEAKING IN BEIJING-TIANJIN-HEBEI CITY AGGLOMERATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 19-24,77. doi: 10.13205/j.hjgc.202011004
  • Cited by

    Periodical cited type(6)

    1. 薛璐,马俊杰,王浩璠,李琳,马劲风. 鄂尔多斯盆地CCS-EOR项目CO_2泄漏环境风险评估. 环境监测管理与技术. 2024(02): 64-68 .
    2. 廖松林,马诗佳,夏菖佑,高志豪,刘牧心,梁希,戴青,黄新我,蒋泽原,于冰清. 玄武岩CO_2矿化封存监测方法和技术体系研究. 水文地质工程地质. 2024(04): 41-52 .
    3. 何淑娴. 碳中和背景下CCUS环境风险预防及责任承担制度研究. 资源节约与环保. 2024(07): 139-144 .
    4. 赵艺芳,白洋. 碳捕获、利用与封存技术纳入碳市场的可行性与制度设计. 环境生态学. 2024(12): 79-85 .
    5. 韩洁平,吕芳菲,戈泽琦. 燃煤电厂CCUS项目投资决策评价研究. 价格理论与实践. 2024(06): 121-128 .
    6. 刘涛,曹杨,周伟,杨雅琪,雷博雯,胡毅然,宋光春,韩辉. 海上CCS/CCUS工程CO_2泄漏风险评估技术分析. 工业安全与环保. 2023(S2): 77-81 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.7 %FULLTEXT: 14.7 %META: 85.3 %META: 85.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.8 %其他: 15.8 %其他: 0.7 %其他: 0.7 %China: 1.4 %China: 1.4 %United States: 0.4 %United States: 0.4 %上海: 1.1 %上海: 1.1 %东莞: 0.4 %东莞: 0.4 %东营: 0.4 %东营: 0.4 %北京: 4.7 %北京: 4.7 %南京: 0.7 %南京: 0.7 %南通: 0.7 %南通: 0.7 %台北: 0.4 %台北: 0.4 %台州: 0.7 %台州: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %大庆: 1.8 %大庆: 1.8 %大连: 0.7 %大连: 0.7 %天津: 6.1 %天津: 6.1 %安康: 0.4 %安康: 0.4 %宜春: 0.4 %宜春: 0.4 %常州: 1.1 %常州: 1.1 %广州: 0.7 %广州: 0.7 %成都: 0.4 %成都: 0.4 %扬州: 2.9 %扬州: 2.9 %昌吉: 0.4 %昌吉: 0.4 %杭州: 5.4 %杭州: 5.4 %榆林: 1.1 %榆林: 1.1 %武汉: 2.5 %武汉: 2.5 %深圳: 0.7 %深圳: 0.7 %温州: 1.4 %温州: 1.4 %漯河: 8.6 %漯河: 8.6 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 8.2 %芒廷维尤: 8.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.4 %苏州: 0.4 %衡阳: 0.4 %衡阳: 0.4 %衢州: 2.2 %衢州: 2.2 %西宁: 19.7 %西宁: 19.7 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.7 %运城: 0.7 %邯郸: 1.4 %邯郸: 1.4 %郑州: 1.1 %郑州: 1.1 %长沙: 1.1 %长沙: 1.1 %青岛: 1.1 %青岛: 1.1 %其他其他ChinaUnited States上海东莞东营北京南京南通台北台州嘉兴大庆大连天津安康宜春常州广州成都扬州昌吉杭州榆林武汉深圳温州漯河石家庄芒廷维尤芝加哥苏州衡阳衢州西宁贵阳运城邯郸郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (315) PDF downloads(11) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return