Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DUAN Tong, ZENG Xiaoyun, TAN Shucheng. REMOVAL OF ANTIBIOTIC RESISTANCE GENES DURING THE TREATMENT OF SWINE WASTEWATER BY MBR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 8-13,21. doi: 10.13205/j.hjgc.202204002
Citation: DUAN Tong, ZENG Xiaoyun, TAN Shucheng. REMOVAL OF ANTIBIOTIC RESISTANCE GENES DURING THE TREATMENT OF SWINE WASTEWATER BY MBR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 8-13,21. doi: 10.13205/j.hjgc.202204002

REMOVAL OF ANTIBIOTIC RESISTANCE GENES DURING THE TREATMENT OF SWINE WASTEWATER BY MBR

doi: 10.13205/j.hjgc.202204002
  • Received Date: 2021-03-23
    Available Online: 2022-07-06
  • In this study antibiotic resistant genes (ARGs) in swine wastewater during the biological treatment was investigated through the methods of laboratory experiment. The ARGs removal during the biological treatment as well as the parameter optimization were explored, in order to provide the theoretical and technological support for control and elimination of ARGs in swine waste. A lab-scale membrane bio-reactor (MBR) was established to treat swine wastewater. The mean removal rate of COD and TN were 95.5% and 92.4%. At the longer SRT of 30, MBR showed the highest removal efficiency of ARGs copy number between 1.5 and 2 logs,but the removal efficiency can reach up to 3.78 logs when the SRT is shortened to 15 days. The effects of environmental factors(DO、pH、T、SS、COD、NH+4-N and TN) on the copy number and abundance of ARGs in MBR effluent showed the same trend. Therefore, by reducing SRT, increasing DO, pH, and temperature, the depletion efficiency of ARGs copy number and abundance can be improved, which has practical application value and guiding significance.
  • [1]
    BARTON M D. Antibiotic use in animal feed and its impact on human healt[J]. Nutrition Research Reviews, 2000, 13(2):279-299.
    [2]
    KIM S, JENSEN J N, AGA D S, et al. Tetracycline as a selector for resistant bacteria in activated sludge[J]. Chemosphere, 2007, 66(9):1643-1651.
    [3]
    闫雷,闫璐,孙睿,等.碱预处理对污泥中抗生素抗性基因丰度的影响[J].中国给水排水, 2014, 30(19):99-102.
    [4]
    BAQUERO F, MARTINEZ J L, CANTON R. Antibiotics and antibiotic resistance in water environments[J]. Current Opinion in Biotechnology, 2008, 19(3):260-265.
    [5]
    于帅,李锦,毛大庆,等.抗生素抗性基因在废(污)水处理系统的来源、传播扩散、归趋以及污染控制研究进展[J].环境化学, 2013,32(11):2059-2071.
    [6]
    MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:a review[J]. Water Research, 2013, 47(3):957-995.
    [7]
    隋倩雯,张俊亚,魏源送,等.畜禽养殖废水生物处理与农田利用过程抗生素抗性基因的转归特征研究进展[J].环境科学学报, 2016,36(1):16-26.
    [8]
    BOERJESSON S, MATTSSON A, LINDGREN P E. Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year[J]. Journal of Water and Health, 2010, 8(2):247-256.
    [9]
    MUNIR M, WONG K, XAGORARAKI I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research, 2011, 45(2):681-693.
    [10]
    闫立娜,王朝朝,李思敏,等.中空纤维MBR工艺膜堵塞行为与膜渗透性评估[J].中国给水排水, 2017, 33(7):15-22.
    [11]
    沈瀚,王亮,李明德,等.填料型A/O工艺处理养猪废水中试研究[J].中国给水排水, 2016, 32(7):121-125.
    [12]
    庞小可,许继飞,张秋萍,等.添加四环素和重金属锌对牛粪厌氧消化性能及四环素类抗性基因丰度的影响[J].环境科学学报,2021,41(4):1487-1495.
    [13]
    APLEY M D, BUSH E J, MORRISON R B,et al.Use estimates of in-feed antimicrobials in swine production in the United States[J]. Foodborne Pathogens and Disease, 2012, 9(3):272-279.
    [14]
    NG L K, MARTIN I, ALFA M,et al.Multiplex PCR for the detection of tetracycline resistant genes[J]. Molecular and Cellular Probes, 2001, 15(4):209-215.
    [15]
    CHEN J, YU Z, MICHEL F C, et al. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems[J]. Applied and Environmental Microbiology, 2007, 73(14):4407-4416.
    [16]
    SUTCLIFFE J, GREBE T, TAIT-KAMRADT A, et al. Detection of erythromycin-resistant determinants by PCR[J]. Antimicrobial agents and chemotherapy, 1996, 40(11):2562-2566.
    [17]
    VOLOKHOV D, CHIZHIKOV V, CHUMAKOV K,et al.Microarray analysis of erythromycin resistance determinants[J]. Journal of Applied Microbiology, 2003, 95(4):787-798.
    [18]
    COLOM K, PÉREZ J, ALONSO R, et al. Simple and reliable multiplex PCR assay for detection of bla TEM, bla SHV and bla OXA-1 genes in Enterobacteriaceae[J]. FEMS Microbiology Letters, 2003, 223(2):147-151.
    [19]
    STOKES H W, NESBØC L, HOLLEY M, et al. Class 1 integrons potentially predating the association with Tn402-like transposition genes are present in a sediment microbial community[J]. Journal of Bacteriology, 2006, 188(16):5722-5730.
    [20]
    RATHER M A, AULAKH R S, GILL J P S, et al. Detection and sequencing of plasmid encoded tetracycline resistance determinants (tetA and tetB) from food-borne Bacillus cereus isolates[J]. Asian Pacific Journal of Tropical Medicine, 2012, 5(9):709-712.
    [21]
    冀秀玲,刘芳,沈群辉,等.养殖场废水中磺胺类和四环素抗生素及其抗性基因的定量检测[J].生态环境学报, 2011,20(5):927-933.
    [22]
    CHEN B W, YANG Y, LIANG X M, et al. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments[J]. Environmental Science&Technology, 2013, 47(22):12753-12760.
    [23]
    TAO C W, HSU B M, JI W T, et al. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR[J]. Science of the Total Environment, 2014, 496:116-121.
    [24]
    AALI R, NIKAEEN M, KHANAHMAD H, et al. Monitoring and comparison of antibiotic resistant bacteria and their resistance genes in municipal and hospital wastewaters[J]. International Journal of Preventive Medicine, 2014, 5(7):887-94.
    [25]
    JOY S R, BARTELT-HUNT S L, SNOW D D, et al.Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry[J]. Environmental Science&Technology, 2013, 47(21):12081-12088.
    [26]
    CHENG W, CHEN H, SU C, et al.Abundance and persistence of antibiotic resistance genes in livestock farms:a comprehensive investigation in eastern China[J]. Environment International, 2013, 61:1-7.
    [27]
    MCKINNEY C W, LOFTIN K A, MEYER M T, et al.Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence[J]. Environmental Science&Technology, 2010, 44(16):6102-6109.
    [28]
    BARKOVSKII A, MANOYLOV K, BRIDGES C. Positive and negative selection towards tetracycline resistance genes in manure treatment lagoons[J]. Journal of Applied Microbiology, 2012, 112(5):907-919.
    [29]
    HUOVINEN P, SUNDSTRÖM L, SWEDBERG G, et al.Trimethoprim and sulfonamide resistance[J]. Antimicrobial Agents and Chemotherapy, 1995, 39(2):279.
    [30]
    ZANETTI L, FRISON N, NOTA E, et al.Progress in real-time control applied to biological nitrogen removal from wastewater:a short-review[J]. Desalination, 2012, 286:1-7.
    [31]
    MA L, ZHANG X X, ZHAO F, et al. Sewage treatment plant serves as a hot-spot reservoir of integrons and gene cassettes[J]. Journal of Environmental Biology, 2013, 34(2):391-399.
    [32]
    SUI Q, CHAO J, ZHANG J, et al. Does the biological treatment or membrane separation reduce the antibiotic resistance genes from swine wastewater through a sequencing-batch membrane bioreactor treatment process[J]. Environment International, 2018, 118(SEP.):274-281.
  • Relative Articles

    [1]CUI Feijian, QIN Guangxiong, ZENG Hailong, HUANG Zhiwei, LI Wenjing, YANG Hanjie, HU Yanfang, FANG Huaiyang, ZENG Fantang, DU Hongwei. SPATIAL DISTRIBUTION CHARACTERISTICS AND POLLUTION ASSESSMENT OF NITROGEN, PHOSPHORUS AND HEAVY METAL IN SURFACE SEDIMENTS OF HEAVILY POLLUTED TRIBUTARIES OF SHAHE RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 110-116. doi: 10.13205/j.hjgc.202201016
    [2]CHEN Ying-ying, ZHANG Liu, YIN Hao, WANG Yu-lai. CHARACTERISTICS OF PHOSPHORUS FRACTIONS IN SURFACE SEDIMENT FROM A CLEAR WATER GALLERY IN PAIHE RIVER, AND ITS ENVIRONMENTAL IMPLICATIONS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 71-78. doi: 10.13205/j.hjgc.202112011
    [3]ZHU Xue-tao, LIN Hai-ying, FENG Qing-ge, ZHAO Bo-han, ZHU Yi-fan, LAN Wen-lu, LI Tian-shen. POLLUTION AND RISK ASSESSMENT, SOURCE ANALYSIS OF HEAVY METALS IN SURFACE SEDIMENTS OF BEIBU GULF, GUANGXI[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 69-76. doi: 10.13205/j.hjgc.202108009
  • Cited by

    Periodical cited type(9)

    1. 杨秀英,郑芳文,雷祥,黄诚,储小东,唐林森. 长江中下游抚河流域沉积物重金属分布特征及来源. 南昌工程学院学报. 2023(06): 29-37 .
    2. 周东,雷琦,杜彩丽,张玮,王丽卿,张瑞雷. 南淝河和十八联圩湿地底栖动物及其与环境因子的关系. 水生态学杂志. 2022(02): 54-61 .
    3. 李家兵,赖月婷,吴如林,曹石云,谢蓉蓉,文昊,秦安贵,孙志高. 河口潮间带沉积物重金属累积及生态风险评价. 生态学报. 2020(05): 1650-1662 .
    4. 张福祥,崔嵩,朱乾德,高尚,李昆阳. 七星河湿地水环境重金属污染特征与风险评价. 环境工程. 2020(10): 68-75 . 本站查看
    5. 陈影影,范颖,张振克,康婷婷,于世永,陈诗越. 东平湖表层沉积物粒度空间分布特征及影响因素. 海洋湖沼通报. 2019(01): 65-70 .
    6. 栗文佳,陈影影,于世永,陈诗越,张云峰. 近40年来东平湖水环境变迁及驱动因素. 环境工程. 2018(10): 48-52 . 本站查看
    7. 王秀,王振祥,潘宝,周春财,刘桂建. 南淝河水-沉积物中重金属的分布规律、环境评价与溯源研究. 环境工程. 2017(04): 134-138 . 本站查看
    8. 潘健,于丹丹,何振芳,姜涵,盖贝贝. 东平湖湿地景观演变对人类活动的响应机制. 水资源保护. 2017(04): 88-94 .
    9. 张菊,陈明文,鲁长娟,郭娜,殷山红,邓焕广. 东平湖表层沉积物重金属形态分布特征及环境风险评价. 生态环境学报. 2017(05): 850-856 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.6 %FULLTEXT: 9.6 %META: 90.4 %META: 90.4 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.0 %其他: 16.0 %其他: 1.1 %其他: 1.1 %China: 2.1 %China: 2.1 %United States: 1.1 %United States: 1.1 %[]: 1.1 %[]: 1.1 %上海: 5.3 %上海: 5.3 %伊利诺伊州: 1.1 %伊利诺伊州: 1.1 %北京: 4.3 %北京: 4.3 %南京: 6.4 %南京: 6.4 %台州: 1.1 %台州: 1.1 %天津: 1.1 %天津: 1.1 %弗吉尼亚州: 1.1 %弗吉尼亚州: 1.1 %张家口: 3.2 %张家口: 3.2 %杭州: 3.2 %杭州: 3.2 %武汉: 1.1 %武汉: 1.1 %深圳: 2.1 %深圳: 2.1 %石家庄: 1.1 %石家庄: 1.1 %芒廷维尤: 25.5 %芒廷维尤: 25.5 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 1.1 %苏州: 1.1 %衡水: 1.1 %衡水: 1.1 %衢州: 3.2 %衢州: 3.2 %西宁: 8.5 %西宁: 8.5 %西雅图: 1.1 %西雅图: 1.1 %贵阳: 1.1 %贵阳: 1.1 %邯郸: 1.1 %邯郸: 1.1 %重庆: 1.1 %重庆: 1.1 %阳泉: 2.1 %阳泉: 2.1 %黄石: 1.1 %黄石: 1.1 %其他其他ChinaUnited States[]上海伊利诺伊州北京南京台州天津弗吉尼亚州张家口杭州武汉深圳石家庄芒廷维尤芝加哥苏州衡水衢州西宁西雅图贵阳邯郸重庆阳泉黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (242) PDF downloads(15) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return