Citation: | ZHANG Peng, XU Ruixia, LIU Shuyi, ZHAO Ling. PREPARATION OF CuO/ZnO CATALYST DERIVED FROM MOFs AND PHOTOCATALYTIC PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 35-42. doi: 10.13205/j.hjgc.202204006 |
[1] |
YANG J J, CHEN D M, ZHU Y, et al. 3D-3d Porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation[J]. Applied Catalysis B:Environmental, 2017, 205:228-237.
|
[2] |
KHAN I A, BADSHAH A, NADEEM M A, et al. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications[J]. International Journal of Hydrogen Energy, 2014, 39(34):19609-19620.
|
[3] |
ZHU C L, DING T, GAO W X, et al. CuO/CeO2 catalysts synthesized from Ce-UiO-66 metal-organic framework for preferential CO oxidation[J]. International Journal of Hydrogen Energy, 2017, 42(27):17457-17465.
|
[4] |
LI H, LIANG M, SUN W X, et al. Bimetal-organic framework:one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for High-Capacity, High-Rate, and Long-Cycle-Life Lithium Storage[J]. Advanced Functional Materials, 2016, 26(7):1098-1103.
|
[5] |
张瑜港.镧系锕系双金属有机框架材料的合成和光学应用[D].苏州:苏州大学, 2020.
|
[6] |
贾哲,任帅,张洁静,等.异质结型CuO/ZnO复合纳米线的制备及光催化性能[J].光子学报, 2021, 50(1):75-82.
|
[7] |
侯俊英,郝建军,王雅雅,等. Cu3(BTC)2金属有机骨架复合基质膜的制备及流体催化性能[J].高等学校化学学报, 2019, 40(9):1926-1931.
|
[8] |
刘震震.金属有机骨架(Cu-MOF)催化NH3-SCR反应去除NO的研究[D].大连:大连理工大学, 2016.
|
[9] |
MARTIN H, SEBASTIAN K, DIETER H, et al. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2[J]. Langmuir, 2008, 24(16):8634-8642.
|
[10] |
吴冲冲.氧化铜异质结光催化剂的设计合成与应用[D].上海:上海工程技术大学, 2020.
|
[11] |
张会平.纳米铜及氧化(亚)铜薄膜的微观结构及性能[D].长春:吉林大学, 2007.
|
[12] |
WANG J, WANG G H, WEI X H, et al. ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB[J]. Applied Surface Science, 2018, 456:666-675.
|
[13] |
武小满,郑永乐.微波辅助法制备CuO/ZnO及光催化研究[J].许昌学院学报, 2016, 35(2):76-80.
|
[14] |
BALUYOT J C, REYES E M, VELARDE M C. Per-and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia's freshwater resources[J]. Environmental Research, 2021, 197:111122.
|
[15] |
BODKHE G A, HEDAU B S, DESHMUKH M A, et al. Detection of Pb (Ⅱ):AU nanoparticle incorporated CuBTC MOFs[J]. Frontiers in Chemistry, 2020, 8:803.
|
[16] |
李俊生,徐美艳,关天宇,等.水热辅助溶胶凝胶法制备纳米钛酸锌及其光催化性能[J].土木与环境工程学报(中英文), 2020, 42(3):149-155.
|
[17] |
CHAI Y Y, LIU Q Q, QIU L, et al. Structure engineered g-C3N4 nano-sheets by switching the pyrolysis gas atmosphere for enhanced photo-catalytic degradation[J]. Chinese Journal of Chemistry, 2017,35(2):173-182.
|
[18] |
LI S J, ZHANG J L, HU S W, et al. Synthesis of flower-like Ta3N5-Au heterojunction with enhanced visible light photocatalytic activity[J]. Journal of Alloys and Compounds, 2017, 695:1137-1144.
|
[19] |
YANG Z, SHAO L, WANG L, et al. Boosted photogenerated carriers separation in Z-scheme Cu3P/ZnIn2S4 heterojunction photocatalyst for highly efficient H-2 evolution under visible light[J]. International Journal of Hydrogen Energy, 2020, 45(28):14334-14346.
|
[20] |
陈英,刘宝生,岑小龙.稀土改性Ni/TiO2光催化剂及其重复利用催化活性[J].稀土, 2010, 31(1):40-47.
|
[21] |
HUANG M, WANG L, ZHANG K, et al. Preparation of three-dimensional flower-like Fe-Bi (OH)3 nanocomposites and the photocatalytic properties for degradation of Rhodamine B in presence of visible light[J]. Optik-International Journal for Light and Electron Optics, 2020, 216:164876.
|
[22] |
DUKALI R M, RADOVIC I M, STOJANOVIC D B, et al. Electrospinning of the laser dye rhodamine B-doped poly (methyl methacrylate) nanofibers[J]. Journal of the Serbian Chemical Society, 2014, 79(7):867-880.
|
[23] |
吴孝敏,倪凯文,宇小龙,等.暴露CeO2不同晶面的VOx-MnOx/CeO2催化剂低温NH3-SCR脱硝的原位红外研究[J].燃料化学学报, 2020, 48(2):179-188.
|