Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YE Yu, XU Wenyu, LU Chunhui, XIE Yifan, LUO Jian. IMPACT OF SURROUNDING HIGH-PERMEABLE POROUS MEDIA ON REMEDIATION EFFICIENCY OF MULTI-SCREEN WELLS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 43-49,146. doi: 10.13205/j.hjgc.202204007
Citation: YE Yu, XU Wenyu, LU Chunhui, XIE Yifan, LUO Jian. IMPACT OF SURROUNDING HIGH-PERMEABLE POROUS MEDIA ON REMEDIATION EFFICIENCY OF MULTI-SCREEN WELLS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 43-49,146. doi: 10.13205/j.hjgc.202204007

IMPACT OF SURROUNDING HIGH-PERMEABLE POROUS MEDIA ON REMEDIATION EFFICIENCY OF MULTI-SCREEN WELLS

doi: 10.13205/j.hjgc.202204007
  • Received Date: 2021-07-29
    Available Online: 2022-07-06
  • To investigate the impact of surrounding heterogenous media on the remediation efficiency of the multi-screen wells, two-dimensional numerical simulations were performed. In the numerical model, high-permeable lenses were constructed around the well and the location, size and hydraulic conductivity of the lenses were changed in different setups. The results showed that the surrounding high-permeable lenses and their position, size and hydraulic conductivity had impact on the remediation efficiency of the multi-screen wells, and its value depended on the effect of flow focusing and meandering introduced by the high-permeable lenses. The high-permeable porous media surrounding the well could significantly enhance remediation efficiency. The optimal injection interval changed due to the existence of heterogeneity surrounding the well. In general, optimal injection interval was enhanced with the surrounding high-permeable porous media. This study provides theoretical instruction for the groundwater remediation using multi-screen wells in heterogeneous aquifer. Furthermore, it offers a new idea on further enhancing remediation efficiency by the multi-screen wells.
  • [1]
    《2020年中国生态环境状况公报》发布[J].电力科技与环保, 2021, 37(3):38.
    [2]
    杨乐巍,张晓斌,李书鹏,等.土壤及地下水原位注入-高压旋喷注射修复技术工程应用案例分析[J].环境工程, 2018, 36(12):48-53.
    [3]
    王朋,陈文英,蒲生彦.地下水循环井原位强化生物修复技术研究进展[J].安全与环境工程, 2021, 28(3):137-146.
    [4]
    STEFFAN R J, SPERRY K L, WALSH M T, et al. Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater[J]. Environmental Science&Technology, 1999, 33(16):2771-2781.
    [5]
    李书鹏,刘鹏,杜晓明,等.采用零价铁-缓释碳修复氯代烃污染地下水的中试研究[J].环境工程, 2021, 31(4):53-58.
    [6]
    BEAR J. Dynamics of fluids in porous media[M]. New York, NY:Dover, 1972.
    [7]
    HOPKINS G D, MCCARTY P L. Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates[J]. Environmental Science&Technology, 1995, 29(6):1628-1637.
    [8]
    YE Y, ZHANG Y, LU C H, et al. Effective chemical delivery through multi-screen wells to enhance mixing and reaction of solute plumes in porous media[J]. Water Resources Research, 2021, 57:e2020WR028551.
    [9]
    BIANCHI M, PEDRETTI D. Geological entropy and solute transport in heterogeneous porous media[J]. Water Resources Research, 2017, 53(6):4691-4708.
    [10]
    FOX D T, GUO L, FUJITA Y, et al. Experimental and numerical analysis of parallel reactant flow and transverse mixing with mineral precipitation in homogeneous and heterogeneous porous media[J]. Transport in Porous Media, 2016, 111(3):605-626.
    [11]
    赵康,郑晓丽,陈冲,等.非均质性对保守溶质及蒙脱石胶体在饱和多孔介质中运移的影响[J].水土保持学报, 2018, 32(3):140-145.
    [12]
    甯娜,许模,段永祥,等.保守性离子在包气带层状土中运移规律研究[J].环境工程, 2015, 33(5):70-74.
    [13]
    郑菲,高燕维,徐红霞,等.非均质性对DNAPL污染源区结构特征影响的实验研究[J].水文地质工程地质, 2016, 43(5):140-148.
    [14]
    王泽坤,严小三,宋羿,等.含透镜体多孔介质中溶质二维运移实验与模拟研究[J].合肥工业大学学报(自然科学版), 2018, 41(7):968-972.
    [15]
    ROLLE M, EBERHARDT C, CHIOGNA G, et al. Enhancement of dilution and transverse reactive mixing in porous media:experiments and model-based interpretation[J]. Journal of Contaminant Hydrology, 2009, 110(3/4):130-142.
    [16]
    WERTH C J, CIRPKA O A, GRATHWOHL P. Enhanced mixing and reaction through flow focusing in heterogeneous porous media[J]. Water Resources Research, 2006, 42(12):W12414.
    [17]
    YE Y, CHIOGNA G, CIRPKA O A, et al. Enhancement of plume dilution in two-dimensional and three-dimensional porous media by flow focusing in high-permeability inclusions[J]. Water Resources Research, 2015, 51(7):5582-5602.
    [18]
    FREEZE R A, CHERRY J A. Groundwater[M]. Upper Saddle River, NJ:Prentice Hall, 1979.
    [19]
    MCDONALD M G, HARBAUGH A W. A modular three-dimensional finite-difference ground-water flow model[R]. U.S. Geological Survey Open-File Report 83-875, 1984.)
    [20]
    ZHENG C, WANG P P. A modular three-dimensional multispecies model for simulation of advection, dispersion, and chemical reaction of contaminants in groundwater systems:documentation and user's guide[R]. Contract report SERDP-99-1. U.S. Vicksburg, MS:Army Engineer Research and Development Center, 1999.
    [21]
    ATKINS P W. Physical Chemistry[M]. Oxford:Oxford University Press, 1990.
    [22]
    SCHEIDEGGER A E. General theory of dispersion in porous media[J]. Journal of Geophysical Research, 1961, 66(10):3273-3278.
    [23]
    CIRPKA O A, VALOCCHI A J. Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state[J]. Advances in Water Resources, 2007, 30:1668-1679.
  • Relative Articles

    [1]ZHANG Zhong, ZHAO Di, XU Gaojie, NING Pengge, ZHAO Yuehong, CAO Hongbin. INFLUENCE OF IMPURITIES ON DISSOLUTION BEHAVIOR OF SODIUM SULFATE IN COAL CHEMICAL INDUSTRY SALINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 156-166. doi: 10.13205/j.hjgc.202409015
    [2]LIU Ruilong, REN Xiaohua, GUO Weilin. PREPARATION OF IRON-BASED CELLULOSE MICROSPHERES AND ITS ACTIVATION ON PERSULFATE TO DEGRADE TETRACYCLINE HYDROCHLORIDE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 86-93,101. doi: 10.13205/j.hjgc.202307012
    [3]CONG Xin, SUN Meizhen, YUAN Xuehong, LI Taolue, XUE Nandong. IRON-BASED NANOMATERIALS MEDIATED BY LEAF EXTRACTS FROM SYCAMORE ACTIVATE PERSULFATES TO CATALYZE TBBPA DEGRADATION IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 107-114. doi: 10.13205/j.hjgc.202305015
    [4]XU Zhenyang, FANG Qinglu, GU Wenwen, LI Zhiying, ZHANG Yimei, WANG Fei. PERFORMANCE OF Bi2WO6@MXenes-NS ACTIVATED PERMONOSULFATE IN DEGRADING BISPHENOL A[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 10-17,62. doi: 10.13205/j.hjgc.202304002
    [5]LIAO Xiaoshu, ZHU Chengyu, CHOU Yue, ZHONG Min, ZHOU Bingling, ZHANG Qian. PERSULFATE ACTIVATION VIA NANOSCALE ZERO-VALENT IRON BASED BIOCHAR FOR OXYTETRACYCLINE DEGRADATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 118-124,95. doi: 10.13205/j.hjgc.202208016
    [6]CAO Yuan, LI Xiao-dong, PENG Chang-sheng, SUN Zong-quan, SHEN Jia-lun, MA Fu-jun, GU Qing-bao. REMOVAL OF 2,4-DINITROTOLUENE BY PERSULFATE ACTIVATED WITH IRON MODIFIED BIOCHAR PREPARED BY DIPPING-PYROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 135-142,178. doi: 10.13205/j.hjgc.202111017
    [7]HUANG Feng-lian, ZOU Xuan, CHEN Can, ZHONG Zhen-yu, LI Xiao-ming, WAN Yong, LIU Wan-rong. DEGRADATION OF ATRAZINE BY FERROUS ACTIVATED SODIUM HYPOCHLORITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 160-165,172. doi: 10.13205/j.hjgc.202102026
    [8]HOU Si-ying, DENG Yi-rong, LU Hai-jian, LV Ming-chao, SU Jia-yun, LI Qu-sheng. RESEARCH PROGRESS ON IRON ACTIVATED PERSULFATE IN SITU REMEDIATION OF ORGANIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 195-200,194. doi: 10.13205/j.hjgc.202104029
    [9]CHEN Wei-gang, WU Hai-xia, FAN Jia-wei. ACTIVATED CARBON HETEROGENEOUS ACTIVATION OF DIFFERENT PERSULFATES TO DEGRADATION AZO DYE ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 113-118,57. doi: 10.13205/j.hjgc.202008019
    [10]XU Rui, YANG Wei, YANG Zhe, CHENG Qian-lan, GU Li-ting, GUO Sheng. HIGH-EFFICIENT REMOVAL OF TETRACYCLINE HYDROCHLORIDE BASED ON PEROXYMONOSULFATE ACTIVATED BY CuO/EXPANDED GRAPHITE COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 48-54,47. doi: 10.13205/j.hjgc.202002006
  • Cited by

    Periodical cited type(5)

    1. 陈卫刚,武海霞,樊佳炜. 活性炭非均相活化不同过硫酸盐降解偶氮染料酸性橙Ⅱ. 环境工程. 2020(08): 113-118+57 . 本站查看
    2. 李湛江,谭雪云,吴锦华,江燕斌,盖恒军. Fe~0/S_2O_8~(2-)异相芬顿与生物组合工艺处理煤化工废水尾水. 环境工程学报. 2018(03): 760-767 .
    3. 廖平平,王学刚,罗成成,李鹏,郭亚丹. Fe~0活化过硫酸铵降解酸性红R的实验研究. 工业安全与环保. 2017(06): 1-4 .
    4. 吴娜娜,钱虹,李亚峰. 水中磺胺类抗生素去除技术研究进展. 建筑与预算. 2017(06): 43-50 .
    5. 张乃文,苏昱. 零价铁活化过硫酸钠降解喹诺酮类抗生素研究. 农村经济与科技. 2017(23): 49-51 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.7 %FULLTEXT: 12.7 %META: 87.3 %META: 87.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.9 %其他: 17.9 %United States: 0.7 %United States: 0.7 %上海: 3.0 %上海: 3.0 %东莞: 1.5 %东莞: 1.5 %北京: 9.7 %北京: 9.7 %台州: 3.0 %台州: 3.0 %哈尔滨: 1.5 %哈尔滨: 1.5 %天津: 2.2 %天津: 2.2 %广州: 5.2 %广州: 5.2 %杭州: 3.0 %杭州: 3.0 %漯河: 2.2 %漯河: 2.2 %芒廷维尤: 27.6 %芒廷维尤: 27.6 %芝加哥: 1.5 %芝加哥: 1.5 %苏州: 0.7 %苏州: 0.7 %衢州: 2.2 %衢州: 2.2 %西宁: 11.9 %西宁: 11.9 %贵阳: 0.7 %贵阳: 0.7 %郑州: 3.7 %郑州: 3.7 %重庆: 0.7 %重庆: 0.7 %金华: 0.7 %金华: 0.7 %其他United States上海东莞北京台州哈尔滨天津广州杭州漯河芒廷维尤芝加哥苏州衢州西宁贵阳郑州重庆金华

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (200) PDF downloads(5) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return