Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Wenjun, ZHENG Chenghang, WANG Yifan, ZHAO Zhongyang, LIU Chang, WU Weihong, LIU Shaojun. NUMERICAL SIMULATION ON SPRAY EVAPORATION PROCESS FOR SMALL-SCALE QUENCH TOWER IN LIMITED SPACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 50-56,78. doi: 10.13205/j.hjgc.202204008
Citation: LI Wenjun, ZHENG Chenghang, WANG Yifan, ZHAO Zhongyang, LIU Chang, WU Weihong, LIU Shaojun. NUMERICAL SIMULATION ON SPRAY EVAPORATION PROCESS FOR SMALL-SCALE QUENCH TOWER IN LIMITED SPACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 50-56,78. doi: 10.13205/j.hjgc.202204008

NUMERICAL SIMULATION ON SPRAY EVAPORATION PROCESS FOR SMALL-SCALE QUENCH TOWER IN LIMITED SPACE

doi: 10.13205/j.hjgc.202204008
  • Received Date: 2021-05-24
    Available Online: 2022-07-06
  • Aiming at small-scale quench tower in limited space, the effect of operation parameters of spray nozzle on the evaporation process was studied by using computational fluid dynamics (CFD), such as atomization droplet size, jet relocity and spray angle. The results showed that with the increase of the droplet size, the evaporation time, axial and radial evaporation distance of the droplet increased accordingly, and the evaporation time increased by 293% when droplet size increased from 40 μm to 80 μm. When the jet velocity of droplet increased, the evaporation time, axial and radial evaporation distance of the droplet decreased, but the effect was weakened when the jet velocity increased to a certain value. The increase of spray angle caused the decrease of the evaporation time and axial evaporation distance of the droplet, but there was no obvious trend on the radial evaporation distance. The small atomizing droplet size nozzle below 70 μm could directly and effectively improve the operation safety. By comparison, it was found that a turbulence intensified area was formed in the upper part of the quench tower with volute inlet, and that led to better cooling characteristic and operational safety than quench tower with upper vertical inlet, when the space of quench tower was limited. The axial safety margin could be increased by 7% with a droplet size of 80 μm. The simulation results could provide optimal design scheme and operation guidance for engineering application of miniaturized quench tower.
  • [1]
    沈祥智,严建华,白丛生,等.垃圾焚烧中污染物生成与受热面腐蚀及其控制[J].热力发电,2006(7):24-28.
    [2]
    黄蕾,李晓东,陆胜勇,等.城市生活垃圾焚烧产生的二噁英的防治措施[J].电站系统工程,2005,21(2):5-7.
    [3]
    陆胜勇.垃圾和煤燃烧过程中二噁英的生成、排放和控制机理研究[D].杭州:浙江大学,2004.
    [4]
    马力,仇性启,王健,等.高温气流中液滴蒸发特性的研究[J].石油化工,2013,42(3):298-302.
    [5]
    RENKSIZBULUT M, YUEN M C. Experimental study of droplet evaporation in a high-temperature air stream[J]. Journal of Heat Transfer, 1983, 105(2):384-388.
    [6]
    HIROSHI N, YASUSHIGE, UJIIE. Experimental study on high-pressure droplet evaporation using microgravity conditions[J]. Symposium on Combustion, 1996, 26(1):1267-1273.
    [7]
    GHASSEMI H, BAEK S W, KHAN Q S. Experimental study on binary droplet evaporation at elevated pressure and temperature[J]. Combustion Science and Technology, 2006, 178(4/5/6):1031-1053.
    [8]
    RENKSIZBULUT M, YUEN M C. Numerical study of droplet evaporation in a high-temperature Stream[J]. Journal of Heat Transfer, 1983, 105(2):99-106.
    [9]
    KINCAID D C, LONGLEY T S. A water droplet evaporation and temperature model[J]. Transactions of the ASAE, 1989, 32(2):457-463.
    [10]
    冉景煜,张志荣.不同物性液滴在低温烟气中的蒸发特性数值研究[J].中国电机工程学报,2010,30(26):62-68.
    [11]
    张志荣,冉景煜.废水液滴在低温烟气中的蒸发特性数值研究[J].环境工程学报,2011,5(9):2048-2053.
    [12]
    WANG B, LI H L, YAN J Y, et al. Modelling the quench tower in flue gas cleaning of a waste fueled power plant[J]. DEStech Transactions on Environment Energy and Earth Science, 2019(iceee).
    [13]
    LI H D, WANG B, YAN J Y, et al. Performance of flue gas quench and its influence on biomass fueled CHP[J]. Energy, 2019, 180:934-945.
    [14]
    詹仕巍,虞斌.急冷塔内喷雾蒸发过程的数值模拟[J].轻工机械,2017,35(6):87-91

    ,96.
    [15]
    李谈教.影响蒸发急冷塔湿壁腐蚀的因素分析[J].上海化工,2019,44(5):18-21.
    [16]
    郭慧媛.医疗垃圾焚烧烟气急冷塔喷雾流场优化及工程应用[D].西安:西北大学,2017.
    [17]
    张天琦,杨宏伟,葛剑,等.基于CFD的急冷塔雾化喷枪数值计算[C]//《环境工程》2019年全国学术年会论文集,2019:4.
    [18]
    GOSWAMI A, KUMAR S. Failure of water quench tower in an ethylene cracking plant-ScienceDirect[J]. Engineering Failure Analysis, 2020, 118:104857.
    [19]
    胡少龙,黄培培,杨吉涛,等.垃圾焚烧尾气处理急冷塔优化设计[J].中国环保产业,2018(8):37-38,42.
    [20]
    盛锴.危险废物焚烧系统烟气急冷塔的数值模拟研究[D].杭州:浙江大学,2008.
    [21]
    李坦,靳世平,黄素逸,等.流场速度分布均匀性评价指标比较与应用研究[J].热力发电,2013,42(11):60-63

    ,92.
  • Relative Articles

    [1]GE Xinyue, LIU Qidi, LIU Siyuan, HOU Jun, YOU Guoxiang. REVIEW OF ANTIBIOTIC DEGRADATION EFFICACY AND EVOLUTION MECHANISM OF ANTIBIOTIC RESISTANCE GENES IN ICPB REACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 1-14. doi: 10.13205/j.hjgc.202407001
    [2]JIN Hongqi, JIANG Rongjie, WANG Zirui, LI Luyang, LUO Jingyang. RESEARCH PROGRESS ON IMPACT AND REGULATION STRATEGIES OF TYPICAL ANTIBIOTICS ON ANAEROBIC DIGESTION EFFICIENCY OF SLUDGE: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 49-59. doi: 10.13205/j.hjgc.202407005
    [3]RUAN Min, WU Xikai, YANG Zhaohui, HUANG Jing, HUANG Zhongliang, LI Hui, WU Zijian, ZHANG Xuan, QIN Xiaoli, ZHANG Yanru. EFFECTS OF TEMPERATURE ON ABUNDANCE AND POTENTIAL HOST OF ARGs DURING SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 75-83. doi: 10.13205/j.hjgc.202305011
    [4]ZENG Guangshu, ZHOU Zhenchao, LIN Yanhan, GE Ziye, LIN Zejun, SHUAI Xinyi, ZHOU Jinyu, CHEN Hong. DISTRIBUTION OF ANTIBIOTIC RESISTANCE GENES AND EXPOSURE RISK IN DRINKING WATER: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 114-123. doi: 10.13205/j.hjgc.202309014
    [5]CHANG Xiao-nan, LI Zai-xing, LI Yi-fei, ZHENG Zi-xuan. SSTUDY ON CATALYTIC PYROLYSIS CHARACTERISTICS OF ANTIBIOTIC RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 18-24,30. doi: 10.13205/j.hjgc.202205003
    [6]DUAN Tong, ZENG Xiaoyun, TAN Shucheng. REMOVAL OF ANTIBIOTIC RESISTANCE GENES DURING THE TREATMENT OF SWINE WASTEWATER BY MBR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 8-13,21. doi: 10.13205/j.hjgc.202204002
    [7]LIU Linmei, TENG Yanguo, YANG Guang, CHEN Haiyang. RESEARCH PROGRESS ON REMOVAL OF ANTIBIOTICS AND ANTIBIOTIC RESISTANCE GENES FROM WASTEWATER BY CONSTRUCTED WETLANDS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 270-280. doi: 10.13205/j.hjgc.202212035
    [8]ZHOU Jun, LI Yan, GUAN Yi-dong, HUANG Li-dong, JIN Hong-mei, XIAO Qiong, SONG Jiang-sheng. MIXED SORPTION OF THREE AQUEOUS SULFONAMIDES ONTO THE BIOCHAR DERIVED FROM POPLAR WOOD CHIPS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 1-6,13. doi: 10.13205/j.hjgc.202103001
    [9]WANG Yu-hang, YU Wei, ZHAO Si-yu, LIU Shan, JIANG Xiao-hui, LI Qi. ADSORPTION OF ANTIBIOTIC DRUGS IN WATER ENVIRONMENT BY MODIFIED BIOCHAR:A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 91-99,134. doi: 10.13205/j.hjgc.202112014
    [10]ZHANG Tian, JIANG Bo, XING Yi, YA Hao-bo. REVIEW ON DEVELOPMENT OF ADSORPTION METHODS TO REMOVE ANTIBIOTICS FORM WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 29-39. doi: 10.13205/j.hjgc.202103005
    [11]YAO Quan-wei, ZHANG Jun, YAN Qin-ying, WANG Dun-qiu, XI Bei-dou. MAIN FACTORS ON DISSIPATION OF TYPICAL FLUOROQUINOLONES IN SEWAGE SLUDGE COMPOST DURING MESOPHILIC AND THERMOPHILIC PHASES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 200-207. doi: 10.13205/j.hjgc.202009032
    [12]LIU Peng-xiao, WANG Xu, FENG Ling. OCCURRENCES, RESOURCES AND RISK OF ANTIBIOTICS IN AQUATIC ENVIRONMENT: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 36-42. doi: 10.13205/j.hjgc.202005007
    [17]Liu Bo, Xue Nandong, Zhang Shilei, Li Fasheng, Meng Lei, Chen Xuanyu. STUDY ON INFLUENT FACTORS ON REMOVAL OF FLUOROQUINOLONES FROM CHICKEN FECES BY THERMAL TREATMENT TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 84-87. doi: 10.13205/j.hjgc.201502018
  • Cited by

    Periodical cited type(9)

    1. 付晓燕,李振国,李翔宇,杨萌,刘莲莲,夏莹,孙震,李志远. 大连市畜禽养殖周边水体抗生素污染特征及生态风险评估. 环境工程. 2023(04): 164-169 . 本站查看
    2. 王淑婷,刘坤,刘静,李月华,王玉东,焉华骏,王晓茵,曹旭敏,秦立得,孙晓亮,宋翠平,赵思俊. UPLC-MS/MS检测牛奶中19种β-内酰胺类药物残留的两种前处理方法对比试验. 中国兽药杂志. 2022(08): 38-45 .
    3. 马小莹,郑浩,汪庆庆,叶云杰,丁震,唐炜. 江苏省不同水源抗生素污染及生态风险评估. 环境卫生学杂志. 2020(02): 131-137 .
    4. 李家成,王佳豪,许锴,刘康乐,彭思伟,林子增,王郑. β-内酰胺类抗生素的检测及去除技术的研究进展. 应用化工. 2020(06): 1541-1546 .
    5. 董文婷,曾勇,吴晓翠,周青. 液相色谱-串联质谱法测定禽蛋中β-内酰胺类药物残留. 食品安全质量检测学报. 2020(20): 7582-7590 .
    6. 安雅静,文勇立,赵佳琦,李子谦,齐沛森,马定美,扎升,侯定超,李强. 头孢喹肟(CEF)影响牦牛瘤胃微生态的宏基因组学分析. 黑龙江畜牧兽医. 2019(05): 136-141 .
    7. 夏玲玲. 抗生素残留受体分析法的研究进展. 科学技术创新. 2019(32): 44-45 .
    8. 王瑞杰,裘钱玲琳,李国祥,纵亚男,唐剑锋,徐耀阳. 宁波月湖水体中抗生素的分布与生态风险评价. 湖泊科学. 2018(06): 1616-1624 .
    9. 王淑婷,孙晓亮,曹旭敏,王晓茵,王玉东,赵思俊. 牛奶中β内酰胺类抗生素残留检测技术研究进展. 动物医学进展. 2018(12): 170-174 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.3 %FULLTEXT: 7.3 %META: 92.7 %META: 92.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.1 %其他: 22.1 %乌鲁木齐: 2.2 %乌鲁木齐: 2.2 %佛山: 0.6 %佛山: 0.6 %内江: 0.6 %内江: 0.6 %北京: 6.1 %北京: 6.1 %十堰: 0.6 %十堰: 0.6 %南通: 1.1 %南通: 1.1 %台州: 1.1 %台州: 1.1 %哈尔滨: 1.1 %哈尔滨: 1.1 %嘉兴: 1.1 %嘉兴: 1.1 %天津: 8.3 %天津: 8.3 %宜春: 0.6 %宜春: 0.6 %常州: 0.6 %常州: 0.6 %广州: 1.7 %广州: 1.7 %成都: 0.6 %成都: 0.6 %扬州: 1.7 %扬州: 1.7 %昆明: 0.6 %昆明: 0.6 %杭州: 5.5 %杭州: 5.5 %武汉: 2.2 %武汉: 2.2 %温州: 0.6 %温州: 0.6 %湖州: 1.7 %湖州: 1.7 %漯河: 7.7 %漯河: 7.7 %石家庄: 1.1 %石家庄: 1.1 %绍兴: 0.6 %绍兴: 0.6 %芒廷维尤: 18.8 %芒廷维尤: 18.8 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.6 %苏州: 0.6 %衢州: 1.1 %衢州: 1.1 %西宁: 3.3 %西宁: 3.3 %贵阳: 0.6 %贵阳: 0.6 %邯郸: 1.1 %邯郸: 1.1 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %长沙: 2.2 %长沙: 2.2 %其他乌鲁木齐佛山内江北京十堰南通台州哈尔滨嘉兴天津宜春常州广州成都扬州昆明杭州武汉温州湖州漯河石家庄绍兴芒廷维尤芝加哥苏州衢州西宁贵阳邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (283) PDF downloads(8) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return