Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SUN Ye, LI Shuaishuai, PANG Linlin, HU Xiaotu, LI Jie, LIU Yong, ZHONG Lu, ZHU Tianle. NO REMOVAL AND NITROGEN CONVERSION PERFORMANCE BY O3 OXIDATION COMBINED WITH WET ABSORPTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 171-176. doi: 10.13205/j.hjgc.202211024
Citation: DAI Yi, MEI Chaoqiang, LI Xue, JIN Qijie, MEI Rong, LU Yao, XU Haitao. EFFECT OF PRECURSORS ON SIMULTANEOUS CATALYTIC REMOVAL OF NITROGEN OXIDES AND CHLOROBENZENE BY MnO2[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 57-63,105. doi: 10.13205/j.hjgc.202204009

EFFECT OF PRECURSORS ON SIMULTANEOUS CATALYTIC REMOVAL OF NITROGEN OXIDES AND CHLOROBENZENE BY MnO2

doi: 10.13205/j.hjgc.202204009
  • Received Date: 2021-07-08
    Available Online: 2022-07-06
  • NOx is one of the main pollutants that cause acid rain and photochemical smog. PCDD/Fs are the most toxic substance known to mankind so far. The coordinated control of multiple pollutants has become the focus of air pollution control in the new era because it can greatly reduce the cost of treatment. In this paper, the MnO2 catalyst was prepared by hydrothermal method, and the simultaneous catalytic removal of nitrogen oxides and chlorobenzene was investigated. Meanwhile, the effect of different precursors on the catalytic performance was investigated. The results showed that the main formation of manganese sulfate as the precursor was α-MnO2, which exhibited the best catalytic performance for catalytic removal of nitrogen oxides and chlorobenzene, and had good catalytic stability. It still maintained 98% of NO conversion and 88% of chlorobenzene conversion after 16 h continuous reaction. The α-MnO2 had a large specific surface area, a high Mn3+ concentration on the surface, and richer surface active oxygen species, so it exhibited excellent redox performance at medium and low temperatures. Therefore, the α-MnO2 catalyst with manganese sulfate as the precursor exhibited the best catalytic performance.
  • [1]
    杨威,郑仁栋,张海丹,等.中国垃圾焚烧发电工程的发展历程与趋势[J].环境工程, 2020, 38:124-129.
    [2]
    SHARMA H B, SARMAH A K, DUBEY B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production:a discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar[J]. Renewable&Sustainable Energy Reviews, 2020, 123:109761.
    [3]
    董陈,曾洋波,姜健,等.燃气-蒸汽联合循环机组SCR脱硝技术研究[J].热力发电, 2020, 49(11):40-46.
    [4]
    GALLASTEGI-VILLA M, ARANZABAL A, GONZALEZ-MARCOS J A, et al. Tailoring dual redox-acid functionalities in VOx/TiO2/ZSM5 catalyst for simultaneous abatement of PCDD/Fs and NOx from municipal solid waste incineration[J]. Applied Catalysis B:Environmental, 2017, 205:310-318.
    [5]
    杜军,郑喜洋,程冉冉.危险废物焚烧工程烟气治理工艺研究[J].现代化工, 2016, 36(2):122-124

    ,126.
    [6]
    盛守祥,刘海生,冯俊亭,等.垃圾焚烧排放二噁英治理技术研究[J].中国资源综合利用, 2019, 37(3):117-120.
    [7]
    GAN L N, LI K Z, XIONG S C, et al. MnOx-CeO2 catalysts for effective NOx reduction in the presence of chlorobenzene[J]. Catalysis Communications, 2018, 117:1-4.
    [8]
    WANG Q L, HUNG P C, LU S Y, et al. Catalytic decomposition of gaseous PCDD/Fs over V2O5/TiO2-CNTs catalyst:effect of NO and NH3 addition[J]. Chemosphere, 2016, 159:132-137.
    [9]
    WANG Q L, HUANG X N, FENG Y H, et al. Interaction mechanism study on simultaneous removal of 1,2-dichlorobenzene and NO over MnOx-CeO2/TiO2 catalysts at low temperatures[J]. Industrial&Engineering Chemistry Research, 2021, 60:4820-4830.
    [10]
    BERTINCHAMPS F, TREINEN M, ELOY P, et al. Understanding the activation mechanism induced by NO<em>x on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs[J]. Applied Catalysis B:Environmental, 2007, 70:360-369.
    [11]
    罗阿群,刘少光,林文松,等.二噁英生成机理及减排方法研究进展[J].化工进展, 2016, 35(3):910-916.
    [12]
    GAN L N, SHI W B, LI K Z, et al. Synergistic promotion effect between NOx and chlorobenzene removal on MnOx-CeO2 catalyst[J]. Acs Applied Materials&Interfaces, 2018, 10:30426-30432.
    [13]
    WENG X L, SUN P F, LONG Y, et al. Catalytic oxidation of chlorobenzene over MnxCe1-xO2/HZSM-5 catalysts:a study with practical implications[J]. Environmental Science and Technology, 2017, 51:8057-8066.
    [14]
    ZHANG J T, ZHAO Z H, XIA Z H, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology, 2015, 10:444-452.
    [15]
    TANG X F, LI J H, SUN L, et al. Origination of N2O from NO reduction by NH3 over beta-MnO2 and alpha-Mn2O3[J]. Applied Catalysis B:Environmental, 2010, 99:156-162.
    [16]
    ZHANG N Q, LI L C, GUO Y Z, et al. A MnO2-based catalyst with H2O resistance for NH3-SCR:study of catalytic activity and reactants-H2O competitive adsorption[J]. Applied Catalysis B:Environmental, 2020, 270:118860.
    [17]
    YANG B, JIN Q J, HUANG Q, et al. Synergetic catalytic removal of chlorobenzene and NOx from waste incineration exhaust over MnNb0.4Ce0.2Ox catalysts:performance and mechanism study[J]. Journal of Rare Earths, 2020, 38:1178-1189.
    [18]
    ZHANG Y P, WANG X L, SHEN K, et al. WO3 modification of MnOx/TiO2 catalysts for low temperature selective catalytic reduction of NO with ammonia[J]. Chinese Journal of Catalysis, 2012, 33:1523-1531.
    [19]
    WANG B, WANG M X, HAN L N, et al. Improved activity and SO2 resistance by Sm-modulated redox of MnCeSmTiOx mesoporous amorphous oxides for low-temperature NH3-SCR of NO[J]. ACS Catalysis, 2020, 10:9034-9045.
    [20]
    MENG D M, ZHAN W C, GUO Y, et al. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature:promotional role of Sm and its catalytic performance[J]. ACS Catalysis, 2015, 5:5973-5983.
    [21]
    FRANCE L J, YANG Q, LI W, et al. Ceria modified FeMnOx-enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Applied Catalysis B:Environmental, 2017, 206:203-215.
    [22]
    LIU H, FAN Z X, SUN C Z, et al. Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3[J]. Applied Catalysis B:Environmental, 2019, 244:671-683.
  • Relative Articles

    [1]PAN Kanghong, MING Leiqiang, GAO Pei, WANG Xudong, LI Xianguo, ZHANG Dahai. SYNERGETIC PRETREATMENT OF EXCESS SLUDGE BY ENHANCING SLUDGE LYSIS BY HYDRODYNAMIC CAVITATION COMBINED WITH OZONATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 126-134. doi: 10.13205/j.hjgc.202401017
    [2]ZHANG Yuqing, SUN Pengkun, TONG Hua. WIDE WINDOW DENITRIFICATION OF V2O5/MICROPOROUS TiO2 UNDER SYNERGISTIC EFFECT OF DIELECTRIC BARRIER DISCHARGE PLASMA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 82-93. doi: 10.13205/j.hjgc.202406010
    [3]BAO Meiling, HU Zhiquan, ZHANG Qiang, HONG Hui, DENG Jun, PEI Yunxia, LI Bingtang. CONSTRUCTION OF A SHORTCUT NITROGEN REMOVAL SYSTEM FOR ALGAL-BACTERIAL SYMBIOSIS AND ANALYSIS OF MICROBIAL COMMUNITY STRUCTURE IN SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 35-42. doi: 10.13205/j.hjgc.202408005
    [4]DAI Ruijia, XIAO Xinxin, ZHAO Yongqi, WEI Aoran, CHEN Xingxing, YU Jianglong, DOU Jinxiao. INFLUENCE OF FLUE GAS COMPONENTS ON NO ABSORPTION BY METHYLUREA-BASED DEEP EUTECTIC SOLVENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 62-69. doi: 10.13205/j.hjgc.202405008
    [5]NI Maosen, YANG Bo, GU Qiuxiang, WANG Zhenhui, HUANG Qiong, CHEN Mindong. REMOVAL PERFORMANCE OVER MnCeOx/P84 CATALYTIC FILTER WITH SPHERICAL CATALYTIC INTERFACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 157-164. doi: 10.13205/j.hjgc.202212021
    [6]LI Simin, YANG Hui, FU Yujie, XIAO Feng, GUO Jianning, LIN Chuanggui. CURRENT KNOWLEDGE AND RESEARCHES ON OZONE/CERAMIC MEMBRANE PROCESS IN WATER TREATMENT FIELD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 212-220. doi: 10.13205/j.hjgc.202203031
    [7]SUN Ye, PANG Lin-lin, LI Jie, LIU Yong, HU Xiao-tu, LI Xiao-bin, ZHU Tian-le. NITROGEN BALANCE OF OZONE A COMBINED DENITRATION PROCESS OF DEEP OXIDATION AND LIQUID-PHASE ABSORPTION: A CASE STUDY ON A 300 m2 SINTERING FLUE GAS OF AN IRON & STEEL COMPANY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 186-191. doi: 10.13205/j.hjgc.202209025
    [8]KONG Fan-xin, XIAO Wei-hao, HE Jian-hua, CHEN Jin-fu. CERAMIC MEMBRANE ENHANCED TREATMENT OF POLYMER FLOODING PRODUCED WATER IN HIGH CALCIUM AND MAGNESIUM RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 128-132,72. doi: 10.13205/j.hjgc.202107016
    [9]WU Min-hui, LIU Shuang, QIAN Hao, WANG Zheng. PILOT-SCALE OPTIMIZATION OF OZONE DOSAGE IN UP FLOW ACTIVATED CARBON-ULTRAFILTRATION COMBINED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 72-77. doi: 10.13205/j.hjgc.202110010
    [10]WANG Shu-ting, WEI Jian-jian, MA Xue-rou, MA De-hua, LI Jian-sheng. CHANGES OF ACUTE TOXICITY AND FLUORESCENCE SPECTRUM PROPERTIES OF PHENOL WASTEWATER TREATED BY OZONE ADVANCED OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 69-76. doi: 10.13205/j.hjgc.202111008
    [11]CHI Tong-tong, XU Ran-yun, LI Fei-fei, CHEN Lv-jun. CATALYTIC OZONATION OF O-CHLOROPHENOL WITH MnOx/GAC SYNTHESIZED VIA ACID-THERMAL OXIDATION MODIFICATION METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 119-126. doi: 10.13205/j.hjgc.202111015
    [12]GAO Jun-xian, RUAN Zhi-yu, XU Ke-wei, JIANG Hai-dong, ZHANG Li, WANG Yan, ZHENG Kai-kai, LI Ji. CHARACTERISTICS OF OZONE OXIDATION PROCESS ON TREATMENT OF SECONDARY EFFLUENT OF WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 88-92,18. doi: 10.13205/j.hjgc.202007014
    [13]ZHU Heng, DONG Chang-qing, WANG Xiao-dong, ZHU Yan-jun, SHEN Chen, ZHANG Xu-ming, QIN Wu, HU Xiao-ying, ZHANG Jun-jiao, WANG Xiao-qiang, ZHAO Ying, XUE Jun-jie. PREPARATION AND PROPERTIES OF V-Mo/TiO2 CORDIERITE SUPPORTED DENITRATION CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 168-174. doi: 10.13205/j.hjgc.202009027
  • Cited by

    Periodical cited type(1)

    1. 陈思维. 臭氧电源在烧结机烟气脱硝上的应用分析. 中国设备工程. 2024(01): 106-108 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.4 %FULLTEXT: 16.4 %META: 80.8 %META: 80.8 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %北京: 2.9 %北京: 2.9 %杭州: 1.4 %杭州: 1.4 %深圳: 1.4 %深圳: 1.4 %湖州: 1.4 %湖州: 1.4 %石家庄: 1.4 %石家庄: 1.4 %芒廷维尤: 42.9 %芒廷维尤: 42.9 %苏州: 1.4 %苏州: 1.4 %西宁: 31.4 %西宁: 31.4 %重庆: 1.4 %重庆: 1.4 %其他北京杭州深圳湖州石家庄芒廷维尤苏州西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (231) PDF downloads(1) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return