Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
GUO Erbao, ZHANG Yifei, HU Haowei, WANG Hanxiao, LIU Xingcheng. PM2.5 PURIFICATION CHARACTERISTICS OF DIFFERENT FILTER UNITS IN INDOOR ENVIRONMENT OF THE BUIDINGS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 64-70. doi: 10.13205/j.hjgc.202204010
Citation: GUO Erbao, ZHANG Yifei, HU Haowei, WANG Hanxiao, LIU Xingcheng. PM2.5 PURIFICATION CHARACTERISTICS OF DIFFERENT FILTER UNITS IN INDOOR ENVIRONMENT OF THE BUIDINGS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 64-70. doi: 10.13205/j.hjgc.202204010

PM2.5 PURIFICATION CHARACTERISTICS OF DIFFERENT FILTER UNITS IN INDOOR ENVIRONMENT OF THE BUIDINGS

doi: 10.13205/j.hjgc.202204010
  • Received Date: 2021-09-21
    Available Online: 2022-07-06
  • In response to the requirements of building indoor purification in the post-COVID-19 era, six kinds of different filter units were selected (No.1—G4 carbon cloth, No.2—G4 polyester, No.3—F7 glass fiber, No.4—F7 electrostatic melt blown cloth, No.5—G4 polyester+F7 glass fiber, No.6-micro static charge electric module+G4 Polyester), and the PM2.5 purification performance of different filter units were analysed through experiments. The primary filtration efficiency, PM2.5 purification efficiency, resistance, CADR and CEE of the different filter units were tested. The results showed that: 1) No.5 and No.6 composed filter unit could effectively improve the primary filtration efficiency of the filter unit and PM2.5 purification efficiency. 2) At the rated wind speed, the resistance of the No.2 filter unit was the lowest, and the resistance of the No.5 filter unit was the highest. 3) In the maximum air volume condition, CADR and CEE of the No.2 filter unit was the smallest, and CADR and CEE of the No.4 filter unit was the largest. The CADR and CEE of No.2 filter unit was about 7.13% and 6.54% of that of No.4 filter unit, respectively. Compared with No.2 filter unit, CADR and CEE of No.6 filter unit was increased by approximately 150% and 247%, respectively. The micro static charge electric module could promote the primary filtration efficiency and the PM2.5 purification efficiency, and shorten the purification time effectively without increasing the resistance.
  • [1]
    LI T T, ZHANG Y, WANG J N, et al. All-cause mortality risk associated with long-term exposure to ambient PM2.5 in China:a cohort study[J]. The Lancet Public Health, 2018, 3(10):470-477.
    [2]
    HU J L, HUANG L, CHEN M D, et al. Premature mortality attributable to particulate matter in China:source contributions and responses to reductions[J]. Environmental Science&Technology, 2017, 51(17):9950-9959.
    [3]
    崔晶晶,沈恒根,李擎.强电场介质装置对实际环境PM2.5的净化效果[J].安全与环境学报,2017,17(4):1500-1504.
    [4]
    MORAWSKA L, MILTON D K. It is time to address airborne transmission of Coronavirus Disease 2019(COVID-19)[J]. Clinical Infectious Diseases, 2020, 71(9):2311-2313.
    [5]
    GREENHALGH T, JIMENEZ J L, PRATHER K A, et al. Ten scientific reasons in support of airborne transmission of SARS-CoV-2[J]. The Lancet, 2021, 397(10295):1603-1605.
    [6]
    LEONARDO S, FABRIZIO P, GIANLUIGI D G, et al. SARS-Cov-2 RNA found on particulate matter of Bergamo in Northern Italy:first preliminary evidence[J]. Environmental Research, 2020, 188:109754.
    [7]
    张梦娇,苏方成,徐起翔,等. 2013-2017年中国PM2.5污染防治的健康效益评估[J].环境科学,2021,42(2):513-522.
    [8]
    郭二宝,沈恒根,张家文.国内外高中低档品牌香烟PM2.5散发特性的试验研究[J].环境工程,2017,35(11):82-89.
    [9]
    WANG H Q. Ventilation, air conditioning and the indoor air environment[J]. Indoor and Built Environment, 2001, 10(1):52-57.
    [10]
    FRONTERA A, CIANFANELLI L, VLACHOS K, et al. Severe air pollution links to higher mortality in COVID-19 patients:the"double-hit"hypothesis[J]. Journal of Infection, 2020, 81(2):255-259.
    [11]
    WU X, NETHERY R C, SABATH M B, et al. Air pollution and COVID-19 mortality in the united states:strengths and limitations of an ecological regression analysis[J]. Science Advances, 2020, 6(45):1-6.
    [12]
    ZHENG H T, ZHAO B, WANG S X, et al. Transition in source contributions of PM2.5 exposure and associated premature mortality in China during 2005-2015[J]. Environment International, 2019, 132:105111.
    [13]
    DU L L, STUART B, EDITH P, et al. Particle concentrations and effectiveness of free-standing air filters in bedrooms of children with asthma in Detroit, Michigan[J]. Building and Environment, 2011, 46(11):2303-2313.
    [14]
    FISK W J. Health benefits of particle filtration[J]. Indoor Air Wiley Online Library, 2013, 23(5):357-368.
    [15]
    JU-HYEONG P, TAE J L, MI J P, et al. Effects of air cleaners and school characteristics on classroom concentrations of particulate matter in 34 elementary schools in Korea[J]. Building and Environment, 2020, 167:106437.
    [16]
    COX J, ISIUGO K, RYAN P, et al. Effectiveness of a portable air cleaner in removing aerosol particles in homes close to highways[J]. Indoor Air, 2018, 28(6):818-827.
    [17]
    BLUYSSEN P M, ORTIZ M, ZHANG D D. The effect of a mobile HEPA filter system on'infectious'aerosols, sound and air velocity in the SenseLab[J]. Building and Environment, 2021, 188(1):107475.
    [18]
    PEI C X, OU Q S,DAVID Y H. Effects of temperature and relative humidity on laboratory air filter loading test by hygroscopic salts[J]. Separation and Purification Technology, 2021, 255:117679.
    [19]
    闫雪,刘兴成,沈恒根.含尘烟气净化用滤料性能测试与分析[J].环境工程,2018,36(8):92-97.
    [20]
    崔晶晶,杨学宾,沈恒根,等.不同过滤单元的室内空气净化器试验研究[J].暖通空调,2017,47(2):54-59.
    [21]
    FENG Z B, YANG J Y, ZHANG J. Numerical optimization on newly developed electrostatic enhanced pleated air filters for efficient removal of airborne ultra-fine particles:towards sustainable urban and built environment[J]. Sustainable Cities and Society, 2020, 255(54):102001.
    [22]
    张辉,贾颖,石彤,等.新型空气净化器净化性能研究[J].天津大学学报,2020,53(3):54-59.
    [23]
    王鹏,柳静献,毛宁,等.空气净化器去除细粒子性能试验研究[J].工业卫生与环保,2015,41(5):57-60.
    [24]
    王亚男,王宇. F级中效过滤器对细颗粒物过滤及容尘性能研究[J].天津城建大学学报,2020,6(3):225-230.
    [25]
    涂虬,向晓东.静电增强颗粒层除尘器除尘效率的理论与实验研究[J].武汉工程职业技术学院学报,2001,13(3):1-6.
    [26]
    荣伟东,张国权.静电增强纤维层过滤性能的研究[J].环境工程,1993,11(1):24-29.
    [27]
    高华东.细颗粒物净化滤料及应用[M].北京:化学工业出版社,2018.
  • Relative Articles

    [1]LIU Yueting, ZHANG Qiang, JIANG Xiaohui, JI Yajun, YUAN Xiaohong, XIE Wenhao, ZHENG Lielong, LUO Jiaxin. SPATIAL-TEMPORAL CHARACTERISTICS OF CARBON EMISSIONS IN URBAN SEWAGE SYSTEM IN XI’AN AND ITS DOMINANT DRIVING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 40-49. doi: 10.13205/j.hjgc.202411005
    [2]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [3]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [4]LIU Xin, WANG Jun-yan. RESEARCH ON SPATIAL DISTRIBUTION CHARACTERISTICS OF INFORMAL CONSTRUCTION WASTE SITES: A CASE STUDY OF CHANGPING DISTRICT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 193-198,233. doi: 10.13205/j.hjgc.202112029
    [5]ZHANG Zhe, REN Yi-meng, DONG Hui-juan. RESEARCH ON CARBON EMISSIONS PEAKING AND LOW-CARBON DEVELOPMENT OF CITIES: A CASE OF SHANGHAI[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 12-18. doi: 10.13205/j.hjgc.202011003
    [17]Zhang Li Sun Jian, . THE ANALYSIS OF THE COUPLING RELATIONSHIP BETWEEN THE URBAN SYSTEM AND CLIMATE CHANGE: TAKING NANJING AS AN EXAMPLE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 71-75. doi: 10.13205/j.hjgc.201506016
    [18]Zhang Chengzhong, Ma Wenjing, Li Yong, Han Deming, Dai Zhiguang, Li Wentao, Han Jing. ANALYSIS OF CARBON COMPONENTS IN PM2. 5 DURING LATE SUMMER AND EARLY AUTUMN OF XI’AN CITY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 95-99. doi: 10.13205/j.hjgc.201505020
    [19]VARIATION ANALYSIS OF NOISE IN XI'AN FUNCTIONAL AREA FOR YEARS AND RESEARCH ON CONTROL COUNTERMEASURE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 117-119. doi: 10.13205/j.hjgc.201412020
  • Cited by

    Periodical cited type(22)

    1. 徐水太,李晞薇,董信. 中国建筑业碳排放强度的空间特征与影响因素分析. 科技导报. 2024(06): 103-111 .
    2. 徐坚,张蓝天,钱宇佳. 新型城镇化背景下云南省建筑业碳排放特征及影响因素研究. 环境科学导刊. 2024(03): 19-26 .
    3. 刘柏建. 经济增长、产业集中度与建筑业碳排放——基于VAR模型的实证研究. 工程建设. 2023(04): 73-78 .
    4. 张新生,任明月,陈章政. 基于CEEMD-SSA-ELM方法的建筑业碳排放预测研究. 生态经济. 2023(10): 33-39+88 .
    5. 戴林琳,封昌炜,周子杰,金丹. 中国县域尺度碳收支的时空演变研究. 生态经济. 2023(11): 31-39+59 .
    6. 吴泽洲,黄浩全,陈湘生,李建军,何秋凤,李奥,黄均,林雨瀚,刘星语,王佳豪. “双碳”目标下建筑业低碳转型对策研究. 中国工程科学. 2023(05): 202-209 .
    7. 俞洁,张勇,李清瑶. 制造业碳减排的脱钩效应及驱动机制——一个二维分析框架. 环境工程. 2023(10): 150-162 . 本站查看
    8. 王洪强,郭秋静,李思茹,张英婕. 建筑业—城镇化—经济协调发展测度研究——基于我国31个省际数据的实证分析. 管理现代化. 2022(02): 9-16 .
    9. 魏光普,康瑜,范浩文,于晓燕,马明. 重工业城市建筑业碳排放核算与预测研究. 生态经济. 2022(09): 43-48 .
    10. 魏好如意,陈艳,李龙,汪竹英. 建筑业碳排放研究的知识图谱可视化分析. 河南工业大学学报(社会科学版). 2022(04): 28-35 .
    11. 纪凡荣,李琦. 基于马尔可夫链的建筑业碳排放的省域差异及时空演变. 建设科技. 2022(22): 21-25 .
    12. 侯雨凝,于跃奇. 可持续发展背景下大型建筑企业ESG绩效评价研究. 建筑经济. 2022(S2): 372-376 .
    13. 张哲,任怡萌,董会娟. 城市碳排放达峰和低碳发展研究:以上海市为例. 环境工程. 2020(11): 12-18 . 本站查看
    14. 高思慧,刘伊生,李欣桐,原境彪. 中国建筑业碳排放影响因素与预测研究. 河南科学. 2019(08): 1344-1350 .
    15. 郑颖,逯非,杨师帅,王效科,刘晶茹. 城市能源消费CO_2排放及其影响因素研究. 环境保护科学. 2019(05): 85-94 .
    16. 蔡佳丽,张陶新. 湖南省分行业碳排放与经济增长相关性研究——基于EKC曲线分析. 中南林业科技大学学报(社会科学版). 2019(05): 50-56 .
    17. 赵冬蕾,刘伊生. 基于系统动力学的中国建筑业碳排放预测研究. 河南科学. 2019(12): 2025-2033 .
    18. 宋金昭,苑向阳,王晓平. 中国建筑业碳排放强度影响因素分析. 环境工程. 2018(01): 178-182 . 本站查看
    19. 江思雨,刘加俊. 基于灰色马尔可夫理论的建筑业碳排放量预测. 洛阳理工学院学报(自然科学版). 2018(02): 6-10 .
    20. 马晓君,董碧滢,于渊博,王常欣,杨倩. 东北三省能源消费碳排放测度及影响因素. 中国环境科学. 2018(08): 3170-3179 .
    21. 金柏辉,李玮,张荣霞,李国敏. 中国建筑业碳排放影响因素空间效应分析. 科技管理研究. 2018(24): 238-245 .
    22. 王剑,薛东前,马蓓蓓. 基于GFI模型的西安市能源消费碳排放因素分解研究. 干旱区地理. 2018(06): 1388-1395 .

    Other cited types(32)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 85.2 %META: 85.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %上海: 2.1 %上海: 2.1 %伊利诺伊州: 0.4 %伊利诺伊州: 0.4 %北京: 3.8 %北京: 3.8 %十堰: 0.4 %十堰: 0.4 %南京: 0.4 %南京: 0.4 %南通: 0.4 %南通: 0.4 %台州: 1.3 %台州: 1.3 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 0.8 %天津: 0.8 %常州: 0.8 %常州: 0.8 %成都: 0.4 %成都: 0.4 %扬州: 1.3 %扬州: 1.3 %杭州: 0.8 %杭州: 0.8 %深圳: 0.4 %深圳: 0.4 %湖州: 0.4 %湖州: 0.4 %漯河: 2.5 %漯河: 2.5 %芒廷维尤: 59.3 %芒廷维尤: 59.3 %苏州: 0.4 %苏州: 0.4 %衢州: 1.3 %衢州: 1.3 %西宁: 2.5 %西宁: 2.5 %西安: 0.4 %西安: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.4 %重庆: 0.4 %长沙: 0.4 %长沙: 0.4 %其他上海伊利诺伊州北京十堰南京南通台州嘉兴天津常州成都扬州杭州深圳湖州漯河芒廷维尤苏州衢州西宁西安郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (150) PDF downloads(4) Cited by(54)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return