Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FAN Xinqi, CHEN Rui, LI Wanting, WEI Yuquan, LIU Yongdi, ZHAN Yabin, LI Ji. EFFECT OF VENTILATION ON DECOMPOSITION AND NITROGEN CONVERSION OF RAPID THERMOPHILIC COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 71-78. doi: 10.13205/j.hjgc.202204011
Citation: FAN Xinqi, CHEN Rui, LI Wanting, WEI Yuquan, LIU Yongdi, ZHAN Yabin, LI Ji. EFFECT OF VENTILATION ON DECOMPOSITION AND NITROGEN CONVERSION OF RAPID THERMOPHILIC COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 71-78. doi: 10.13205/j.hjgc.202204011

EFFECT OF VENTILATION ON DECOMPOSITION AND NITROGEN CONVERSION OF RAPID THERMOPHILIC COMPOSTING OF KITCHEN WASTE

doi: 10.13205/j.hjgc.202204011
  • Received Date: 2021-07-03
    Available Online: 2022-07-06
  • Aiming at the problems of long traditional composting cycle, low dehydration efficiency, and poor insulation preservation effect, this research used kitchen waste and sawdust as raw materials, based on a composting reactor with external heat source, the effect of ventilation modes (natural ventilation and high-temperature ventilation with external heat source) and ventilation rates on temperature, moisture content, oxygen content, maturity index (pH, electric conductivity, germination index) and nitrogen form transformation during high-temperature composting of food waste were studied. The results showed that: 1) the high-temperature ventilation mode was helpful to maintain high temperature of the reactor, significantly prolonged the high temperature period, improved the water removal rate and maturity of the reactor. Compared with natural ventilation, the high temperature period (≥50 ℃) under high temperature ventilation was extended for 6 days, the cumulative temperature increased by 51.77%, the water removal rate increased by 62.37%, and the seed germination rate increased by 14.75%; 2) compared with natural ventilation, the ammonia volatilization and nitrogen loss under high temperature ventilation treatment increased by 131.46% and 74.87% respectively; 3) the increase of ventilation rate could improve the water removal rate. When the aeration rate reached 0.75 L/(kg DM·min), the water removal rate reached the peak value of 80.31%; 4) in the high-temperature ventilation mode, ammonia volatilization and nitrogen loss increased with the increase of ventilation rate, and ammonia volatilization accounted for 55.48%~70.73% of nitrogen loss, which was the main way of nitrogen loss.
  • [1]
    常燕青,黄慧敏,赵振振,等.餐厨垃圾资源化处理与高值化利用技术发展展望[J].环境卫生工程, 2021,29(1):44-51.
    [2]
    蔡旺炜,陈俐慧,王为木,等.我国城市厨余垃圾好氧堆肥研究综述[J].中国土壤与肥料, 2014(6):8-13.
    [3]
    XIAO Y, ZENG G M, YANG Z H, et al. Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste[J]. Bioresource Technology, 2009,100(20):4807-4813.
    [4]
    HOSSEINI S M, AZIZ H A. Evaluation of thermochemical pretreatment and continuous thermophilic condition in rice straw composting process enhancement[J]. Bioresource Technology, 2013,133:240-247.
    [5]
    詹亚斌,魏雨泉,林永锋,等.通风模式对餐厨垃圾生物干化能效及氮素损失的影响[J].环境工程,2021,39(5):124-130.
    [6]
    CHOWDHURY M A, de NEERGAARD A, JENSEN L S. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting[J]. Chemosphere, 2014,97:16-25.
    [7]
    HE X, CHEN L, HAN L, et al. Evaluation of biochar powder on oxygen supply efficiency and global warming potential during mainstream large-scale aerobic composting[J]. Bioresource Technology, 2017,245:309-317.
    [8]
    徐文龙,章菁,乌鲁斯·莱德,等.关于垃圾堆肥的作用及工艺优化的探讨——堆肥中氧、温度和湿度的控制[J].环境工程, 2006,24(2):50-55.
    [9]
    袁金鹏,王敬平,周少奇,等.不同调理剂对有机垃圾好氧堆肥效果的影响[J].环境工程, 2016,34(11):85-89.
    [10]
    张红玉.碳氮比对厨余垃圾堆肥腐熟度的影响[J].环境工程, 2013,31(2):87-91.
    [11]
    张玉冬,张红玉,顾军,等.通风方式对厨余垃圾堆肥腐熟度的影响[J].环境工程, 2015,33(增刊1):619-622.
    [12]
    JIANG T, LI G X, TANG Q, et al. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale[J]. Journal of Environmental Sciences, 2015,31:124-132.
    [13]
    廖黎明,赵力剑,卢宇翔,等.固体废弃物堆肥过程中氮素转化及损失控制策略研究[J].环境工程, 2019,37(2):133-137.
    [14]
    陈是吏,袁京,李国学,等.过磷酸钙和双氰胺联用减少污泥堆肥温室气体及NH3排放[J].农业工程学报, 2017,33(6):199-206.
    [15]
    TOM A P, PAWELS R, HARIDAS A. Biodrying process:a sustainable technology for treatment of municipal solid waste with high moisture content[J]. Waste Management, 2016,49:64-72.
    [16]
    杨延梅.通风量对厨余堆肥氮素转化及氮素损失的影响[J].环境科学与技术, 2010,33(12):1-4.
    [17]
    王友玲,邱慧珍, GHANNEY PHILIP,等.通风方式对牛粪堆肥氨气排放与氮素转化的影响[J].农业机械学报, 2020,51(11):313-320.
    [18]
    李春萍,李国学,李玉春,等.北京南宫静态堆肥隧道仓不同区间的垃圾堆肥腐熟度模糊评价[J].农业工程学报, 2007,23(2):201-206.
    [19]
    刘文杰,王黎明,沈玉君,等.碳氮比对蔬菜废弃物好氧发酵腐熟度及臭气排放的影响[J].环境工程, 2020,38(6):233-239.
    [20]
    聂二旗,郑国砥,高定,等.适量通风显著降低鸡粪好氧堆肥过程中氮素损失[J].植物营养与肥料学报, 2019,25(10):1773-1780.
    [21]
    SHAN G C, LI W G, GAO Y J, et al. Additives for reducing nitrogen loss during composting:a review[J]. Journal of Cleaner Production, 2021,307:127308.
    [22]
    杜龙龙,袁京,李国学,等.通风速率对厨余垃圾堆肥NH3和H2S排放及腐熟度影响[J].中国环境科学, 2015,35(12):3714-3720.
    [23]
    王国兴,董桂军,艾士奇,等.通风量对堆肥化过程中氮素转化及nirK基因多样性和数量的影响[J].农业环境科学学报, 2016,35(3):565-572.
    [24]
    HAM G Y, LEE D H, MATSUTO T, et al. Simultaneous effects of airflow and temperature increase on water removal in bio-drying[J]. Journal of Material Cycles and Waste Management, 2020,22(4):1056-1066.
    [25]
    BASU S, SHIVHARE U S, MUJUMDAR A S. Models for sorption isotherms for foods:a review[J]. Drying Technology, 2006,24(8).
    [26]
    李季,彭生平.堆肥工程实用手册[M]. 2版.北京:化学工业出版社,2011.
    [27]
    张羽鑫,刘闯,黄殿男,等.超高温菌好氧堆肥技术对人粪便的处理效果[J].江苏农业科学, 2021,49(4):179-185.
  • Relative Articles

    [1]CUI Ruoqi, CHE Xiangqian, LU Zhen, LI Yingnan, WANG Pan, REN Lianhai. EFFECT OF HYDROTHERMAL TREATMENT ON DEGREASING PROPERTY AND PHYSICAL AND CHEMICAL PROPERTIES OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 204-211. doi: 10.13205/j.hjgc.202404024
    [2]ZHOU Youwei, CHEN Jisheng, HE Lei, XING Meiyan. TRANSFORMATION CHARACTERISTICS OF CARBON AND NITROGEN IN SLUDGE-KITCHEN EARTHWORM COMPOST BASED ON LAND USE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 10-22. doi: 10.13205/j.hjgc.202402002
    [3]LI Ziyu, LI Zhenzhou, DOU Yuting, LUO Jingyang. INFLUENCES OF HETEROLOGOUS SUBSTANCES OCCURRED IN FOOD WASTE ON ANAEROBIC DIGESTION AND REGULATION STRATEGIES: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 222-232. doi: 10.13205/j.hjgc.202306029
    [4]SONG Na, ZHAO Pan, GUAN Weijie, CHEN Liwei, ZHANG Shuang, WANG Qunhui. EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020
    [5]YUAN Yue, WANG Bo, LI Yongbo, KE Hang, ZHAO Shuiqian. ENHANCEMENT OF CO-DIGESTION OF SLUDGE AND FOOD WASTE BY HIGH TEMPERATURE PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 91-97. doi: 10.13205/j.hjgc.202302013
    [6]HOU Lintong, YANG Xuezhong, LI Jian, YAN Beibei, CHEN Guanyi. SELF-POWER PROPERTY OF PYROLYSIS OF KITCHEN WASTE: AN INVESTIGATION ON THE MASS AND ENERGY FLOW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 37-45. doi: 10.13205/j.hjgc.202212006
    [7]HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014
    [8]QU Yang, ZHU Weibing, CHANG Yanqing, WU Yuan, PENG Mingguo, GU Xiaotao, SUN Rong. A PILOT-SCALE TEST OF DANO DYNAMIC COMPOSTING OF SOLID RESIDUE FROM FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 46-52,104. doi: 10.13205/j.hjgc.202212007
    [9]GONG Yabin, YAO Jiangang, TAN Jing. ANAEROBIC BIOGAS PRODUCTION EFFICIENCY OF FOOD WASTE AT THE MEDIUM TEMPERATURE AND INTERMEDIATE TEMPERATURE ZONE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 132-138. doi: 10.13205/j.hjgc.202203020
    [10]CHANG Yuan, ZHAN Yabin, TAO Xingling, LIU Yongdi, ZHANG Kui, YU Bo, WEI Yuquan, LI Ji. EFFECT OF EXOGENOUS ADDITIVES ON PHOSPHORUS MOBILIZATION IN PHOSPHORUS-RICH COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 112-119. doi: 10.13205/j.hjgc.202210015
    [11]LIANG Jian-ru, YAN Cheng, WANG Dian-zhan, XIONG You-wen, ZHOU Li-xiang. A PILOT STUDY ON BIO-CONVERSION OF RESTAURANT FOOD WASTE BY FLY MAGGOTS AND THE RELATED EQUIPMENTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 166-171,205. doi: 10.13205/j.hjgc.202112025
    [12]GUO Zhi-chao, XU Xian-bao, XU Ting-ting, ZHAO Ai-hua, TAI Jun, LIU Ya-nan, XUE Gang, LI Xiang. ANALYSIS ON FERMENTATION PATHWAY AND CAPROATE PRODUCTION FROM FOOD WASTE BY DIFFERENT INOCULUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 160-168. doi: 10.13205/j.hjgc.202109023
    [13]LI Xu-sheng, LU Sha-sha, JIANG Yuan-yan, WANG Li-ao. EFFECT AND MECHANISM OF BIOCHAR IN MITIGATING ACIDIFICATION OF ANAEROBIC DIGESTION PROCESS FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 179-187. doi: 10.13205/j.hjgc.202112027
    [14]ZHAN Ya-bin, WEI Yu-quan, LIN Yong-feng, ZHANG A-ke, TAO Xing-ling, REN Jian-guo, SHEN Wei-dong, LI Ji. EFFECTS OF AERATION MODES ON ENERGY CONSUMPTION, DEHYDRATION EFFICIENCY AND NITROGEN LOSS OF KITCHEN WASTE BIO-DRYING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 124-130. doi: 10.13205/j.hjgc.202105017
    [15]LIAO Li-ming, PAN Jia-qi, CHEN Yu, HU Yao-yuan, MO Hui, LU Yu, SU Cheng-yuan. ANALYSIS OF EFFECT OF ADDITION OF CHINESE HERBAL RESIDUE ON FOOD WASTE COMPOSTING BASED ON EEM AND HIGH-THROUGHPUT SEQUENCING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 142-147. doi: 10.13205/j.hjgc.202101022
    [16]SONG Cai-hong, QI Hui, WEI Zi-min, XIA Xun-feng. HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015
    [17]SONG Na, REN Yuan-yuan, WANG Wan-qing, ZHANG Li-rong, GUAN Wei-jie, ZHANG Shuang, WANG Qun-hui. MECHANISM ANALYSIS OF BACTERIOSTATIC EFFECT ON FOOD WASTE ANAEROBIC PRESERVATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 41-46. doi: 10.13205/j.hjgc.202008007
    [18]LI Tong, WANG Pan, CHEN Xi-teng, ZHAO Ze-xi, MA Li-juan, REN Lian-hai. DRY ANAEROBIC FERMENTATION OF KITCHEN WASTE AND FOOD WASTE AND ALLEVIATION OF ACID INHIBITION BY ACTIVATED CARBON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 213-218. doi: 10.13205/j.hjgc.202009034
    [19]ZHOU Jian-hua, CHEN Feng. AN EXAMPLE OF A TYPICAL KITCHEN WASTE COMPREHENSIVE TREATMENT PROJECT IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 47-51. doi: 10.13205/j.hjgc.202008008
    [20]STUDY ON THE START-UP TECHNOLOGY OF TREATING KITCHEN WASTE IN IC ANAEROBIC REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 87-90. doi: 10.13205/j.hjgc.201412015
  • Cited by

    Periodical cited type(10)

    1. 付增宇,郭玮,李志超,周海柱. 低温环境中粪便堆肥研究进展. 农业与技术. 2024(03): 87-89 .
    2. 亢涵,陈亚欣,姜浩. 有机固废好氧堆肥中氮素转化的研究现状. 环境保护与循环经济. 2024(01): 33-36 .
    3. 郑艺欣,张博,赵云,赵雪,高明霞,冯浩,孙本华. 高温-蚯蚓联合处理对餐厨垃圾堆肥品质及其应用效果的影响. 西北农业学报. 2024(06): 1174-1182 .
    4. 张治国,马莹,郑永红. 有机固废多功能堆肥一体装置设计与分析. 池州学院学报. 2024(03): 49-52 .
    5. 莫锦韬,李军,路一鸣,张军,席北斗. 间歇通风对污泥好氧堆肥过程中腐殖质电子转移能力的影响. 中国环境科学. 2023(05): 2393-2403 .
    6. 李丹,陈豹,曹云,孙倩,张晶,徐跃定,曲萍,黄红英. 二氧化锰对微好氧堆肥腐熟、温室气体及臭气排放的影响. 农业工程学报. 2023(13): 202-212 .
    7. 赵世淏,程琼仪,孟海波. 不同通风工艺对猪粪好氧堆肥腐熟效果的影响. 环境工程. 2023(S2): 1242-1246 . 本站查看
    8. 李源源,陈高攀,孙浩,贾亚津,刘双,郝建军,王雅雅. 厨余垃圾添加量对鸡粪与小麦秸秆混合堆肥过程的影响. 科学技术与工程. 2023(35): 15305-15311 .
    9. 黄庆,刘惠琼,郑恒,汤婷,刘同庆,周耀渝. 市政污泥协同农林废物好氧发酵中试研究. 环境卫生工程. 2022(04): 41-47 .
    10. 常远,陈睿,詹亚斌,刘勇迪,张利萍,李若琪,许艇,魏雨泉,李季. 通风条件对餐厨废弃物辅热生物干化过程硫素转化的影响. 农业工程学报. 2022(S1): 283-291 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.3 %FULLTEXT: 13.3 %META: 84.1 %META: 84.1 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.5 %其他: 18.5 %China: 0.4 %China: 0.4 %[]: 0.4 %[]: 0.4 %上海: 0.9 %上海: 0.9 %东莞: 0.9 %东莞: 0.9 %临汾: 0.4 %临汾: 0.4 %伊利诺伊州: 0.4 %伊利诺伊州: 0.4 %保定: 0.4 %保定: 0.4 %北京: 6.4 %北京: 6.4 %南京: 1.7 %南京: 1.7 %合肥: 0.4 %合肥: 0.4 %天津: 1.3 %天津: 1.3 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.9 %广州: 0.9 %张家口: 1.3 %张家口: 1.3 %成都: 1.3 %成都: 1.3 %扬州: 1.7 %扬州: 1.7 %昆明: 0.4 %昆明: 0.4 %晋城: 0.9 %晋城: 0.9 %朝阳: 0.4 %朝阳: 0.4 %杭州: 2.6 %杭州: 2.6 %武汉: 0.4 %武汉: 0.4 %济南: 0.4 %济南: 0.4 %济源: 0.4 %济源: 0.4 %温州: 0.9 %温州: 0.9 %漯河: 2.1 %漯河: 2.1 %石家庄: 0.9 %石家庄: 0.9 %秦皇岛: 0.4 %秦皇岛: 0.4 %芒廷维尤: 10.7 %芒廷维尤: 10.7 %芝加哥: 4.7 %芝加哥: 4.7 %苏州: 0.4 %苏州: 0.4 %茂名: 0.4 %茂名: 0.4 %衢州: 0.4 %衢州: 0.4 %西宁: 25.8 %西宁: 25.8 %西安: 0.9 %西安: 0.9 %贵阳: 0.4 %贵阳: 0.4 %运城: 4.3 %运城: 4.3 %遵义: 0.4 %遵义: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.4 %重庆: 0.4 %金昌: 0.4 %金昌: 0.4 %长沙: 1.7 %长沙: 1.7 %黄冈: 0.4 %黄冈: 0.4 %其他China[]上海东莞临汾伊利诺伊州保定北京南京合肥天津常州常德广州张家口成都扬州昆明晋城朝阳杭州武汉济南济源温州漯河石家庄秦皇岛芒廷维尤芝加哥苏州茂名衢州西宁西安贵阳运城遵义郑州重庆金昌长沙黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(6) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return