Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIONG Fu-zhong, WEN Dong-hui. ADVANCES OF HIGHLY-EFFICIENT TECHNOLOGIES AND THEORIES FOR REFRACTORY INDUSTRIAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 1-15,40. doi: 10.13205/j.hjgc.202111001
Citation: ZHANG Kui, WANG Xuemei, LI Yuhuan, ZHANG Yu, LIU Mengjuan, JIANG Xueping, JI Hongbing. HIGH EFFICIENCY ADSORPTION OF Hg2+ BY SULFUR-MODIFIED COW MANURE BIOCHAR AND ITS MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 79-88. doi: 10.13205/j.hjgc.202204012

HIGH EFFICIENCY ADSORPTION OF Hg2+ BY SULFUR-MODIFIED COW MANURE BIOCHAR AND ITS MECHANISM

doi: 10.13205/j.hjgc.202204012
  • Received Date: 2021-08-06
    Available Online: 2022-07-06
  • Cow manure biochar (BC) were prepared by low-limit oxygen pyrolysis of cow manure at 400 ℃, 500 ℃ and 600 ℃, and then sulfur-modified cow manure biochar (BCS) were prepared by co-pyrolysis of sublimated sulfur and BC at different mass ratios. The BC and BCS were characterized by elemental analyzer, SEM, FTIR, XPS and BET, and the adsorption characteristics of each BC and BCS sample for Hg2+ were studied. The results showed that with the increase of pyrolysis temperature, BC and BCS became coarse and porous, and Hg2+ was adsorbed on the surface and pore of biochar. Kinetic experiments showed that the adsorption process of BC and BCS could be better described by the pseudo-second-order model than the pseudo-first-order model. The equilibrium time of BCS for Hg2+ adsorption was only 30 min, and the adsorption process was not affected by pH. The results of isothermal experiments showed that Langmuir model could better describe the adsorption process of BC, and the adsorption capacity decreased when increasing pyrolysis temperature. The isothermal adsorption of BCS to Hg2+ conformed to the Freundlich equation, the adsorption capacity of BCS was significantly higher than BC, and the maximum adsorption capacity was 407.81 mg/g. The desorption experiments showed that the adsorption stability of BCS was higher than BC, and the desorption rate was lower than 5% in each desorption agent. The results of FTIR and XPS showed that the main adsorption mechanisms of BC and BCS were functional group complexation and HgS precipitation, respectively. Therefore, BCS is a highly efficient and stable mercury adsorption material.
  • [1]
    CABRITA M T, DUARTE B, CESÁRIO R, et al. Mercury mobility and effects in the salt-marsh plant Halimione portulacoides:uptake, transport, and toxicity and tolerance mechanisms[J]. Science of the Total Environment, 2019,650:111-120.
    [2]
    YU C H, XU Y P, YAN Y Y, et al. Mercury and methylmercury in China's lake sediments and first estimation of mercury burial fluxes[J]. Science of the Total Environment, 2021,770:145338.
    [3]
    KOPEC A D, KIDD K A, FISHER N S, et al. Spatial and temporal trends of mercury in the aquatic food web of the lower Penobscot River, Maine, USA, affected by a chlor-alkali plant[J]. Science of the Total Environment, 2019,649:770-791.
    [4]
    朱先芳,唐磊,季宏兵,等.北京北部水系沉积物中重金属的研究[J].环境科学学报, 2010,30(12):2553-2562.
    [5]
    LANDIS M S, KEELER G J, AL-WALI K I, et al. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition[J]. Atmospheric Environment, 2004,38(4):613-622.
    [6]
    HADAVIFAR M, BAHRAMIFAR N, YOUNESI H, et al. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups[J]. Chemical Engineering Journal, 2014,237:217-228.
    [7]
    贾威,陈金全,常军军.汞污染生物修复研究进展[J].环境工程, 2020,38(5):171-178.
    [8]
    刘支强,康钦利,侯志成,等.含汞气田水硫化物的沉淀脱汞[J].油气田地面工程, 2012,31(4):41-42.
    [9]
    AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere, 2014,99:19-33.
    [10]
    周俊,李燕,管益东,等.杨木生物炭对水溶液中3种磺胺类抗生素的混合吸附[J].环境工程, 2021,39(3):1-6.
    [11]
    陈林,平巍,闫彬,等.不同制备温度下污泥生物炭对Cr (Ⅵ)的吸附特性[J].环境工程, 2020,38(8):119-124.
    [12]
    ZHAO J W, GAO F, SUN Y, et al. New use for biochar derived from bovine manure for tetracycline removal[J]. Journal of Environmental Chemical Engineering, 2021,9(4):105585.
    [13]
    VAUGHN S F, KENAR J A, THOMPSON A R, et al. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates[J]. Industrial Crops and Products, 2013,51:437-443.
    [14]
    HIGASHIKAWA F S, CONZ R F, COLZATO M, et al. Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water[J]. Journal of Cleaner Production, 2016,137:965-972.
    [15]
    谢婧如,陈本寿,张进忠,等.巯基改性海泡石吸附水中的Hg (Ⅱ)[J].环境科学, 2016,37(6):2187-2194.
    [16]
    LYU H H, XIA S Y, TANG J C, et al. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+[J]. Journal of Hazardous Materials, 2020,384:121357.
    [17]
    O'CONNOR D, PENG T, LI G, et al. Sulfur-modified rice husk biochar:a green method for the remediation of mercury contaminated soil[J]. Science of the Total Environment, 2018,621:819-826.
    [18]
    彭华,张洪宇,张晶.畜禽粪污治理利用主要进展及问题对策[J].中国猪业, 2018,13(9):53-57.
    [19]
    陈佼,黄雯,陆一新,等.羊粪生物炭对SBR系统污水处理性能的影响[J].水处理技术, 2021,47(10):108-112.
    [20]
    JEFFREY M, NOVAK I L B, XING J W G C, K. C. Das M A D, et al. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J]. Annals of Environmental Science, 2009,3:195-206.
    [21]
    SAHOO S S, VIJAY V K, CHANDRA R, et al. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo[J]. Cleaner Engineering and Technology, 2021,3:100101.
    [22]
    PARK J, WANG J J, KIM S, et al. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures[J]. Journal of Colloid and Interface Science, 2019,553:298-307.
    [23]
    HUANG F, ZHANG S M, WU R R, et al. Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars[J]. Environmental Pollution, 2021,275:116485.
    [24]
    AHMAD Z, GAO B, MOSA A, et al. Removal of Cu (Ⅱ), Cd (Ⅱ) and Pb (Ⅱ) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018,180:437-449.
    [25]
    WEBER W J, MORRIS J C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, 1963,2(89):31-60.
    [26]
    张艳素,豆小敏,于新,等.锆铁复合氧化物颗粒对As (Ⅴ)的去除研究[J].环境化学, 2011,30(8):1396-1404.
    [27]
    KUN-Yi A L, YU-Ting L, SHEN-Yi C. Adsorption of fluoride to UiO-66-NH2 in water:stability, kinetic, isotherm and thermodynamic studies[J]. Journal of Colloid and Interface Science, 2016,461:79-87.
    [28]
    YAO Y J, BING H, XU F F, et al. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes[J]. Chemical Engineering Journal, 2011,170(1):82-89.
    [29]
    曹健华,刘凌沁,黄亚继,等.原料种类和热解温度对生物炭吸附Cd2+的影响[J].化工进展, 2019,38(9):4183-4190.
    [30]
    LI R H, ZHANG Y C, DENG H X, et al. Removing tetracycline and Hg (Ⅱ) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation[J]. Journal of Hazardous Materials, 2020,384:121095.
    [31]
    WALY S M, EL-WAKIL A M, EL-MAATY W M A, et al. Efficient removal of Pb (Ⅱ) and Hg (Ⅱ) ions from aqueous solution by amine and thiol modified activated carbon[J]. Journal of Saudi Chemical Society, 2021,25(8):101296.
    [32]
    SITKO R, MUSIELAK M, SERDA M, et al. Thiosemicarbazide-grafted graphene oxide as superior adsorbent for highly efficient and selective removal of mercury ions from water[J]. Separation and Purification Technology, 2021,254:117606.
    [33]
    XU X Y, CAO X D, ZHAO L. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions:role of mineral components in biochars[J]. Chemosphere, 2013,92(8):955-961.
    [34]
    XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013,20(1):358-368.
    [35]
    HUANG Y, TANG J C, GAI L, et al. Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal[J]. Chemical Engineering Journal, 2017,319:229-239.
    [36]
    CHEN D, WANG X B, WANG X L, et al. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil[J]. Science of the Total Environment, 2020,714:136550.
    [37]
    COATES J. Interpretation of infrared spectra, a practical approach[M]. John Wiley&Sons, Ltd., 2006.
    [38]
    RAO C N R, VENKATARAGHAVAN R. The CS stretching frequency and the"-N-CS bands"in the infrared[J]. Spectrochimica Acta Part A:Molecular Spectroscopy, 1989,45:299-305.
    [39]
    DONG X, MA L Q, ZHU Y, et al. Mechanistic investigation of mercury sorption by brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry[J]. Environmental Science&Technology, 2013,47(21):12156-12164.
    [40]
    TANG H J, YOU W Q, WANG Z W, et al. Detrimental effects of SO2 on gaseous mercury (Ⅱ) adsorption and retention by CaO-based sorbent traps:competition and heterogeneous reduction[J]. Journal of Hazardous Materials, 2020,387:121679.
    [41]
    STROYUK O, RAEVSKAYA A, SPRANGER F, et al. Mercury-indium-sulfide nanocrystals:a new member of the family of ternary in based chalcogenides[J]. The Journal of Chemical Physics, 2019,151(14):144701.
    [42]
    ZYLBERAJCH-ANTOINE C, BARRAUD A, ROULET H, et al. XPS characterization of inserted mercury sulfide single layers in a Langmuir-Blodgett matrix[J]. Applied Surface Science, 1991,52(4):323-327.
  • Relative Articles

    [1]ZHANG Jinfeng, XU Chengbin, GUO Fei. A BIBLIOMETRIC STUDY OF ANTIMONY ECOLOGICAL ENVIRONMENTAL RISK AND WATER QUALITY BENCHMARKING TREND[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 207-214. doi: 10.13205/j.hjgc.202403026
    [2]LUO Fei, LIAO Man, LIN Ting, XI Xiuping, CHEN Mengfang, SONG Jing. STUDY ON RISK SCREENING VALUES AND INTERVENTION VALUES FOR SOIL CONTAMINATION OF DEVELOPMENT LAND IN SHENZHEN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 159-166. doi: 10.13205/j.hjgc.202408019
    [3]ZHANG Lei, LI Xuemei, WEI Yuan, FENG Chenglian, SU Hailei, LIU Yuxian, ZHAO Yanan, LI Feilong, GUO Fen, ZHANG Yuan, XUE Jingchuan. ENVIRONMENTAL OCCURRENCE AND ECOLOGICAL RISK ASSESSMENT OF PARABENS AND METABOLITES IN THE DONGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 91-99. doi: 10.13205/j.hjgc.202404011
    [4]GAO Jingsi, HAN Huili, CHEN Na, NIE Jinxu, ZHU Jia, ZHOU Jianfeng. A REVIEW OF IRON-CARBON MICRO-ELECTROLYSIS IN TYPICAL INDUSTRIAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 56-64. doi: 10.13205/j.hjgc.202410008
    [5]ZHONG Yiwen, SU Wenxing, JIANG Shan, WANG Yinhong, LIU Wangrong, WU Genyi, ZENG Dong, CHEN Lei. MICROBIAL COMMUNITY SUCCESSION DURING LIQUID MANURE FERMENTATION AND ITS CORRELATION WITH ENVIRONMENTAL FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 145-153. doi: 10.13205/j.hjgc.202308018
    [6]LI Danlin, GUO Shuai, HUANG Rongmin, ZHANG Hao, CHENG Haoke. RISK ASSESSMENT OF EXTRANEOUS WATER IN SEWAGE SYSTEMS BASED ON INTEGRATED MONITORING OF WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 39-45. doi: 10.13205/j.hjgc.202311006
    [7]ZHANG Meng, ZHAO Yani, ZHANG Liling, WU Jingya, LI Shuping, ZHU Guangcan, SUN Liwei. COMPARISON OF CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE IN SEWAGE TREATMENT PLANTS OF HIGH ALTITUDE AREA AND LOW ALTITUDE AREA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 66-73. doi: 10.13205/j.hjgc.202203011
    [8]CHEN Weidong, WEN Donghui. ADVANCES IN SPATIAL-TEMPORAL DISTRIBUTION AND ASSEMBLY MECHANISMS OF MICROBIAL COMMUNITY IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 1-13,39. doi: 10.13205/j.hjgc.202208001
    [9]LIU Bin, HE Jie, LI Xueyan. CHARACTERISTICS OF SIMULTANEOUS TREATMENT OF NITROGEN AND PHOSPHORUS IN PYRITE BIOFILTER AND ITS MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 32-37,138. doi: 10.13205/j.hjgc.202203006
    [10]LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009
    [11]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [12]SUN Guang-xi, TIAN Zhe, DING Ran, GAO Ying-xin, WANG Jun, ZHANG Yu, YANG Min. REVIEW OF ADVANCED TREATMENT TECHNOLOGIES FOR HIGH CONCENTRATION AND REFRACTORY INDUSTRIAL WASTEWATER FROM SOME TYPICAL INDUSTRIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 16-27,134. doi: 10.13205/j.hjgc.202111002
    [13]WEI Chao-hai, GUAN Xiang-hong, WEI Geng-rui, LI Ze-min, WEI Tuo, CHEN A-cong. THE NEXUS IMPORTANCE OF AQUEOUS SOLUTION PROPERTIES AND WATER POLLUTION CONTROL PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 28-40. doi: 10.13205/j.hjgc.202111003
    [14]SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005
    [18]Zhang Kefeng, Liu Qi, Zhang Qianwen, Yu Xiaodi, Wang Hongbo. EFFECT OF BULKING AGENT TYPE AND PROPORTION ON SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 45-48. doi: 10.13205/j.hjgc.201501011
  • Cited by

    Periodical cited type(19)

    1. 钱伟杰,黄连芝,马敏杰,李荧,郑炜. 组合工艺处理难降解化工废水的试验研究. 当代化工. 2024(01): 49-53 .
    2. 王博,张长安,赵利民,袁俊,宋永一. 基于掺硼金刚石电极的工业废水处理研究进展. 化工进展. 2024(01): 501-513 .
    3. 樊立萍,温越霄. SA-PQ-11/CF阳极提高MFC废水处理效果与发电性能. 精细化工. 2024(05): 1101-1107 .
    4. 杨恒,卜勇杰,曾康健,彭文庆,邓星星,管青军,周双,王卫军. 浙江某石矿废水高效净化试验研究. 非金属矿. 2024(S5): 85-88 .
    5. 杨恒,卜勇杰,曾康健,彭文庆,邓星星,管青军,周双,王卫军. 浙江某石矿废水高效净化试验研究. 非金属矿. 2024(05): 85-88 .
    6. 王唯,王冬晶,孙亮,王孟圆,李丽,刘宇,刘彬. MOFs材料声催化活性在工业废水处理中的应用进展. 工业水处理. 2023(01): 26-31 .
    7. 余水平,王元月,何友文,王先勇,邵鹏辉,徐翔涛. 高级氧化技术在工业废水深度处理中的应用进展. 江西化工. 2023(03): 7-12 .
    8. 黄思远. 印染废水芬顿污泥原位资源化利用. 净水技术. 2023(S1): 167-172+352 .
    9. 张任梁,陈莉,朱铭,田秉晖,梁峰,刘鹏宇. 基于新型电渗析将高盐废水资源化的研究进展. 现代化工. 2023(07): 25-29+34 .
    10. 范荣桂,关怀远,张玛格. 高铁酸钾-Fenton联合氧化处理制革综合废水. 化学研究与应用. 2023(06): 1475-1480 .
    11. 乔天宇,杨凯麟,冯明明,吴明敏,王国强,王维斌,高嘉蔚. 微电解-Fenton氧化联用技术在工业废水处理中的应用研究进展. 中国资源综合利用. 2023(07): 89-92 .
    12. 杨芳. 基于AOP高级氧化法的污水深度处理工艺设计优化研究. 粘接. 2023(10): 126-129 .
    13. 孙志洪,翟玉荣,蔡雅,辛国兴,刘琦,王磊,刘军普. 壳聚糖复合凝胶珠的制备及其在废水处理中的应用. 化学与粘合. 2023(06): 537-541+546 .
    14. 冯雷雷. 混凝-O_3/H_2O_2氧化联合工艺处理工业塑料生产废水的研究. 塑料助剂. 2023(04): 12-15+23 .
    15. 吕英俊,张健君,孟凡良,杨淑芳,彭峰. 南方某生物医药产业园集中废水处理厂工艺流程选择的思考. 给水排水. 2023(S1): 259-265 .
    16. 李轶,徐文筠,童林林,孙红波,万芬芬,张文龙. 面向低碳约束的工业园区水网络优化研究. 环境工程. 2023(11): 154-159 . 本站查看
    17. 童敏. 强化生化技术在造纸废水处理中的应用研究. 造纸装备及材料. 2022(05): 150-152 .
    18. 蒋玉柱,惠贺龙,刘弘毅,丁广超,卢文义,李松庚. 印染污泥基生物炭吸附处理难降解有机废水. 环境工程. 2022(10): 32-39 . 本站查看
    19. 王梦雨,邸永江,张浩,贾碧,田浩. SnS_2半导体光催化材料应用研究进展. 广州化工. 2022(23): 24-27 .

    Other cited types(32)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.6 %FULLTEXT: 18.6 %META: 81.4 %META: 81.4 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.4 %其他: 17.4 %上海: 1.2 %上海: 1.2 %北京: 7.0 %北京: 7.0 %台州: 4.7 %台州: 4.7 %杭州: 1.2 %杭州: 1.2 %湖州: 1.2 %湖州: 1.2 %芒廷维尤: 23.3 %芒廷维尤: 23.3 %苏州: 1.2 %苏州: 1.2 %衢州: 1.2 %衢州: 1.2 %西宁: 40.7 %西宁: 40.7 %重庆: 1.2 %重庆: 1.2 %其他上海北京台州杭州湖州芒廷维尤苏州衢州西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (176) PDF downloads(7) Cited by(51)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return