Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014
Citation: HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014

IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS

doi: 10.13205/j.hjgc.202204014
  • Received Date: 2021-07-20
    Available Online: 2022-07-06
  • In a small-scale experiment, four groups of self-made composting reactors were used to explore the effect of compound microbial agents on the aerobic biological treatment process and composting effect of food wastes. Using sawdust as an auxiliary material, the heterotrophic bacteria from BIOFORM ® Waste Digester (WD), the composite thermostable bacteria screened and prepared in previous study (TB), and the mixture of WD+TB were added separately. The no bacteria group was selected as the control (CK). The total weight of pile, temperature, moisture, organic matter content of dry matter, pH value and seed germination index (GI) were determined to study the treatment process. The results showed that when the initial moisture content, organic matter content of dry matter, C/N, amount of auxiliary materials (weight ratio of food waste) and amount of bacteria were (63.5±0.5)%, (96.6±0.9)%, 34.9±2.7, 20% and 25 mL/kg respectively, (WD+TB) group had the longest high temperature period and the highest temperature peak. During the 15-day trial period, (WD+TB) group performed best in terms of total weight loss rate (80.7%), the organic matter loss rate (64.3%) and the daily mean organic matter reduction rate (2.13 times of CK), with the lowest water soluble ammonia nitrogen content and E4/E6, and the highest germination rate index (96.3±26.7)%. This composite microbial agent (WD+TB) could effectively improve the aerobic biological treatment effect of food waste and significantly improve the composting efficiency.
  • [1]
    程亚莉,毕桂灿,沃德芳,等.国内外餐厨垃圾现状及其处理措施[J].新能源进展,2017,5(4):266-271.
    [2]
    江洋,鞠美庭,李维尊,等.餐厨垃圾好氧堆肥技术市场化推广与应用的关键问题分析[J].生态经济,2017,33(4):96-101

    ,106.
    [3]
    周营,朱能武,刘博文,等.微生物菌剂复配及强化厨余垃圾好氧堆肥效果分析[J].环境工程学报,2018,12(1):294-303.
    [4]
    勾长龙,高云航,刘淑霞,等.微生物菌剂对堆肥发酵影响的研究进展[J].湖北农业科学, 2013(6):1244-1247.
    [5]
    李洋,席北斗,赵越,等.不同物料堆肥腐熟度评价指标的变化特性[J].环境科学研究, 2014,27(6);623-627.
    [6]
    ZHOU Y, SELVAM A, WONG J W. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste[J]. Bioresource Technology, 2016, 217:190-199.
    [7]
    WANG X, SELVAM A, WONG J W. Influence of lime on struvite formation and nitrogen conservation during food waste composting[J]. Bioresource Technology, 2016, 217:227-232.
    [8]
    PANDEY P K, CAO W, BISWAS S, et al. A new closed loop heating system for composting of green and food wastes[J]. Journal of Cleaner Production, 2016, 133:1252-1259.
    [9]
    KE G R, LAI C M, LIU Y Y, et al. Inoculation of food waste with the thermo-tolerant lipolytic actinomycete Thermoactinomyces vulgaris A31 and maturity evaluation of the compost[J]. Bioresource Technology, 2010, 101(19):7424-7431.
    [10]
    YU H, HUANG G H. Effects of sodium acetate as a pH control amendment on the composting of food waste[J]. Bioresource Technology, 2009, 100(6):2005-2011.
    [11]
    赵斌,方正,柯晓静.促腐菌剂在农业有机废弃物腐解中的应用研究进展[J].河南农业科学,2014,43(1):7-10.
    [12]
    傅梓铖,兴虹,张煜,等.微生物菌剂对厨余垃圾好氧堆肥影响[J].辽宁科技学院学报, 2020, 22(1):13-15.
    [13]
    咸芳.餐厨垃圾高效处理复合微生物菌剂的研究[D].长春:吉林大学,2009.
    [14]
    周德庆.微生物学实验教程[M]. 4版.高等教育出版社, 2019.
    [15]
    黄金屏. CJJ/T 52-93城市生活垃圾好氧静态堆肥处理技术规程[J].环境卫生工程, 1994(2):2-2.
    [16]
    CJJ 52-2014生活垃圾堆肥处理技术规范[S].
    [17]
    罗渊,袁京,李国学,等.种子发芽试验在低碳氮比堆肥腐熟度评价方面的适用性[J].农业环境科学学报,2016,35(1):179-185.
    [18]
    李强,赵秀兰,胡彩荣. ISO 10390:2005土壤质量pH的测定[J].污染防治技术, 2006, 19(1):53-55.
    [19]
    GB 7959-2012中华人民共和国粪便无害化卫生标准[S].
    [20]
    LIANG C, DAS K C, MCCLENDON R W. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend[J]. Bioresource Technology, 2003, 86(2):131-137.
    [21]
    石晓晓,陈同斌,郑国砥,高定.有机固废堆肥过程的水分平衡模型研究进展[J].中国土壤与肥料,2019(6):7-13.
    [22]
    AHN H K, RICHARD T L, GLANVILLE T D. Optimum moisture levels for biodegradation of mortality composting envelope materials[J]. Waste Manag, 2008, 28(8):1411-1416.
    [23]
    杨帆,欧阳喜辉,李国学,等.膨松剂对厨余垃圾堆肥CH4、N2O和NH3排放的影响[J].农业工程学报, 2013,29(18):226-233.
    [24]
    MASÓ M, BLASI A. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua[J]. Bioresource Technology, 2008, 99(11):5120-5124.
    [25]
    NEYLA S, SOULWENE K, FADHEL M, et al. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition[J]. Journal of Environmental Science, 2009, 21(10):1452-1458.
    [26]
    鲁如坤.土壤-植物营养学原理和施肥[M].北京:化学工业出版社, 1998.
    [27]
    翁洵,王炎,郑孟菲,等.堆肥过程中氮素转化及保氮措施研究进展[J].中国农学通报, 2017, 33(27):26-32.
  • Relative Articles

    [1]CHU Yangyang, LI Hui, ZHU Yanping, HAN Xiaomeng, SHU Shihu. A REVIEW OF RESEARCH PROGRESS OF PREDICTION MODELS FOR DISINFECTION BY-PRODUCTS: EMPIRICAL MODELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 38-48. doi: 10.13205/j.hjgc.202407004
    [2]HE Weiqi, CHEN Rong, LU Zhixiang, MA Xu, WU Zhijie. ANOMALY DETECTION OF SMOKE EMISSIONS BASED ON WORKING CONDITION DATA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 79-84. doi: 10.13205/j.hjgc.202401011
    [3]XIE Qi, XIA Fei, YUAN Bo. PREDICTION OF PM2.5 CONCENTRATION IN XI’AN BASED ON CEEMDAN-SE-BiLSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 105-115. doi: 10.13205/j.hjgc.202408013
    [4]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [5]ZHOU Jianguo, WANG Jianyu, WEI Siti. PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021
    [6]FANG Li, HE Lijuan, HAO Run, NIE Lei, WANG Hailin. PRIMARY STUDY ON ENVIRONMENTAL IMPACT AND CONTROL MEASURES OF FUGITIVE COAL DUST DURING RAILWAY TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 123-127,147. doi: 10.13205/j.hjgc.202201018
    [7]DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
    [8]LI Yang, LIU Yong-he, WANG Xi-yue, WANG Hai-lin. SPATIAL-TEMPORAL CHARACTERISTICS OF PM2.5 AND PM10 AND THEIR RELATIONSHIPS WITH METEOROLOGICAL FACTORS IN JIAOZUO, HENAN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 44-53. doi: 10.13205/j.hjgc.202209006
    [9]HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
    [10]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [11]WANG Xue-mei, WANG Feng-wen, CHEN Tao, ZHANG Qing-guo, JIANG Yue-lin. PM2.5 CONCENTRATION PREDICTION AND UNCERTAINTY ANALYSIS BASED ON A COMPOSITE MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 229-235. doi: 10.13205/j.hjgc.202008038
    [12]ZHAO Wen-cheng, WANG Fang. ANALYSIS OF URBAN AIR QUALITY INDEX BASED ON MULTISCALE CROSS TREND SAMPLE ENTROPY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 91-98. doi: 10.13205/j.hjgc.202002013
    [13]WEI Wen-jing, XIE Bing-geng, ZHOU Kai-chun, LI Xiao-qing. RESEARCH ON TEMPORAL AND SPATIAL VARIATIONS OF ATMOSPHERIC PM2.5 AND PM10 AND THE INFLUENCING FACTORS IN SHANDONG, CHINA DURING 2013—2018[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 103-111. doi: 10.13205/j.hjgc.202012018
    [17]Ye Ming Wang Gongzheng Su Guimei Mo Runyang Hu Jing, . PREPARATION AND APPLICATION OF FUNCTIONAL MAGNETIC NANOCOMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 66-71. doi: 10.13205/j.hjgc.201510015
    [18]Zhang Lihua, Wu Jiechun, Bao Yuhai, Xu Ri, Xu Kun. THE ANALYSIS OF POLLUTION LEVEL OF PARTICLES PM10 AND PM2. 5 IN WUHAN AND XI'AN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 73-76. doi: 10.13205/j.hjgc.201503015
  • Cited by

    Periodical cited type(7)

    1. 王永生,谭诗怡,刘文静,刘广文,张德龙. 基于变权重组合的沙尘污染物浓度预测. 干旱区资源与环境. 2025(03): 152-162 .
    2. 冯万富,沈新志,周继良,李月凤,单燕祥,余洁. 基于气象要素的鸡公山景区PM_(10)浓度预测. 河南大学学报(自然科学版). 2022(05): 571-578 .
    3. 陆秋琴,潘婉琪,黄光球. 区域VOCs聚集态势RF-LSTM智能感知方法. 安全与环境学报. 2022(05): 2832-2844 .
    4. 林涛,吉萌萌,付崇阁,程淑伟. 基于改进时间卷积网络的空气质量预测研究. 计算机仿真. 2022(10): 451-456+501 .
    5. 张志刚,徐莹,张锦秋,韩秀杰,闫尉深. 基于随机森林的公路隧道CO气体浓度预测模型. 科学技术与工程. 2022(26): 11729-11735 .
    6. 贾勇. 基于LSTM神经网络的嵌入式软件可靠性预测方法. 信息与电脑(理论版). 2021(04): 51-52 .
    7. 夏容,江官星. 基于LSTM的软件时间序列延迟预测仿真. 计算机仿真. 2021(12): 435-439 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 88.0 %META: 88.0 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.6 %其他: 15.6 %其他: 0.2 %其他: 0.2 %China: 0.5 %China: 0.5 %[]: 0.7 %[]: 0.7 %上海: 2.3 %上海: 2.3 %东莞: 0.7 %东莞: 0.7 %临汾: 0.9 %临汾: 0.9 %北京: 3.2 %北京: 3.2 %南京: 0.2 %南京: 0.2 %南昌: 0.7 %南昌: 0.7 %南通: 0.9 %南通: 0.9 %台中: 0.5 %台中: 0.5 %台州: 0.7 %台州: 0.7 %吕梁: 0.2 %吕梁: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大同: 0.2 %大同: 0.2 %天津: 1.6 %天津: 1.6 %太原: 0.2 %太原: 0.2 %宜宾: 0.5 %宜宾: 0.5 %常德: 0.2 %常德: 0.2 %广州: 0.2 %广州: 0.2 %弗吉: 0.2 %弗吉: 0.2 %张家口: 0.5 %张家口: 0.5 %德黑兰: 0.7 %德黑兰: 0.7 %成都: 0.9 %成都: 0.9 %拉贾斯坦邦: 0.2 %拉贾斯坦邦: 0.2 %文山壮族苗族自治州: 0.2 %文山壮族苗族自治州: 0.2 %昆明: 0.9 %昆明: 0.9 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.5 %杭州: 0.5 %武汉: 0.7 %武汉: 0.7 %济源: 0.5 %济源: 0.5 %淮安: 0.2 %淮安: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 1.6 %湖州: 1.6 %漯河: 0.2 %漯河: 0.2 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.5 %秦皇岛: 0.5 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 47.0 %芒廷维尤: 47.0 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.9 %苏州: 0.9 %衡阳: 0.2 %衡阳: 0.2 %衢州: 1.4 %衢州: 1.4 %西宁: 4.5 %西宁: 4.5 %西安: 0.5 %西安: 0.5 %西雅图: 0.7 %西雅图: 0.7 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.4 %运城: 1.4 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.1 %郑州: 1.1 %重庆: 0.7 %重庆: 0.7 %银川: 0.5 %银川: 0.5 %长治: 0.2 %长治: 0.2 %其他其他China[]上海东莞临汾北京南京南昌南通台中台州吕梁嘉兴大同天津太原宜宾常德广州弗吉张家口德黑兰成都拉贾斯坦邦文山壮族苗族自治州昆明晋城朝阳杭州武汉济源淮安温州湖州漯河石家庄秦皇岛绵阳芒廷维尤芝加哥苏州衡阳衢州西宁西安西雅图贵阳运城遵义邯郸郑州重庆银川长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (221) PDF downloads(13) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return