Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HUO Jiajia, LUO Shengxu, WANG Yanshi, WANG Xinwei, DENG Qin, LI Jinying. PASSIVATION OF LEAD IN SOIL BY FULVIC ACID-NANO-ZERO-VALENT IRON COMPLEX[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 112-120. doi: 10.13205/j.hjgc.202204016
Citation: HUO Jiajia, LUO Shengxu, WANG Yanshi, WANG Xinwei, DENG Qin, LI Jinying. PASSIVATION OF LEAD IN SOIL BY FULVIC ACID-NANO-ZERO-VALENT IRON COMPLEX[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 112-120. doi: 10.13205/j.hjgc.202204016

PASSIVATION OF LEAD IN SOIL BY FULVIC ACID-NANO-ZERO-VALENT IRON COMPLEX

doi: 10.13205/j.hjgc.202204016
  • Received Date: 2021-06-19
    Available Online: 2022-07-06
  • In order to reduce the biological activity of heavy metals in soil, composites were made using fulvic acid (FA) extracted from selenium-enriched soil and nano-zero-valent iron (NZVI) prepared by conventional methods with different FA mass ratios. The composites were characterized by SEM, FTIR and XRD. Trough soil cultivation experiments, the effect of each compound on the occurrence of DTPA with lead added externally in soil under different dosages and reaction times were studied, and analyzed the morphological changes with Tessier method to discuss its passivation consequent. The results showed that FA and NZVI formed composites successfully with different FA mass ratios; under the same dosage, the effective state of DTPA of lead in the soil decreased with the increase of the FA mass ratio in the composites; when the composites with 10% FA mass was added to the soil in 2% (20.0 g/kg), the DTPA effective state of lead in the soil was reduced by 83.01% on the 10th day; after adding the composites, the lead in the soil transformed significantly from the exchangeable state and the carbonate combined state to Fe-Mn oxide combined state and the residual state, and the organic bound state was unchanged basically. These changes were especially significant when the compound with 1% FA mass was added, making the exchangeable state and the carbonate bound state reduced respectively by 50.61% and 66.90%. Therefore, based on different morphological characterization methods, the active forms of soil lead showed a downward trend, indicating that the prepared composite had a certain passivation effect on soil lead, but the mechanism was different, and the passivation laws shown were different.
  • [1]
    袁峰,唐先进,吴骥子,等.两种铁基材料对污染农田土壤砷、铅、镉的钝化修复[J].环境科学,2021,42(7):3535-3548.
    [2]
    佚名.全国土壤污染状况调查公报[J].中国环保产业,2014(5):10-11.
    [3]
    张金碧,柯耀义.微波消解-石墨炉原子吸收光谱法测定土壤中铅、镉的探究[J].广东化工,2021,48(5):191-192

    ,190.
    [4]
    冯艳红,郑丽萍,应蓉蓉,等.黔西北炼锌矿区土壤重金属形态分析及风险评价[J].生态与农村环境学报,2017,33(2):142-149.
    [5]
    ZHU R,WU M,YANG J. Mobilities and leachabilities of heavy metals in sludge with humus soil[J]. Journal of Environmental Sciences, 2011, 23(2):247-254.
    [6]
    ZHANG L W,SHANG Z B,GUO K X,et al. Speciation analysis and speciation transformation of heavy metal ions in passivation process with thiol-functionalized nano-silica[J]. Chemical Engineering Journal, 2019, 369:979-987.
    [7]
    LIU Q J,LI X,TANG J P,et al. Characterization of goethite-fulvic acid composites and their impact on the immobility of pb/cd in soil[J]. Chemosphere, 2019, 222:556-563.
    [8]
    LIU J F, ZHAO Z S, JIANG G B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water[J]. Environmental Science&Technology, 2008, 42(18):6949-6954.
    [9]
    DU Q,LI G X, ZHANG S S,et al. High-dispersion zero-valent iron particles stabilized by artificial humic acid for lead ion removal[J]. J Hazard Mater, 2020, 383:121170.
    [10]
    FU R B,ZHANG X,XU Z,et al. Fast and highly efficient removal of chromium (Ⅵ) using humus-supported nanoscale zero-valent iron:influencing factors, kinetics and mechanism[J]. Separation and Purification Technology, 2017, 174:362-371.
    [11]
    TANG W W, ZENG G M, GONG J L,et al. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials:a review[J]. Science of the Total Environment, 2014,468/469:1014-1027.
    [12]
    陈林倩.富硒区芥菜土壤腐殖质特征及其对重金属迁移转化的影响[D].海口:海南大学,2018.
    [13]
    JIANG D N, ZENG G M, HUANG D L,et al. Remediation of contaminated soils by enhanced nanoscale zero valent iron[J]. Environmental Research, 2018, 163:217-227.
    [14]
    LLERME N V, JOSÉ E C, JUNIOR S G P. Influence of soil use on organic carbon and humic substances of an oxisol in tropical systems[J]. Functions of Natural Organic Matter in Changing Environment, 2013, 401-405.
    [15]
    LINDSAY W L,NORVELL W A. Development of a dtpa soil test for zinc, iron, manganese, and copper[J]. Soil Science Society of America Journal, 1978, 42(3):421-428.
    [16]
    LYDIA L,JEAN-LUC P. A new sequential extraction procedure for the speciation of particulate trace elements in river sediments[J]. International Journal of Environmental Analytical Chemistry, 1999, 73(2):109-128.
    [17]
    王培.纤维素改性纳米零价铁及其对水中染料的脱色降解研究[D].昆明:昆明理工大学,2015.
    [18]
    ARANGANATHAN L,RAJASREE R R S,GOVINDARAJU K,et al. Spectral and microscopic analysis of fulvic acids isolated from marine fish waste and sugarcane bagasse co-compost[J]. Biocatalysis and Agricultural Biotechnology, 2020, 29:101762.
    [19]
    MOHAMMAD B. Ahmed,JOHN L. zhou,HUU H. Ngo,et al. Nano-Fe0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite[J]. Chemical Engineering Journal, 2017, 322(1):571-581.
    [20]
    赵庆圆,李小明,杨麒,等.磷酸盐、腐殖酸与粉煤灰联合钝化处理模拟铅镉污染土壤[J].环境科学,2018,39(1):389-398.
    [21]
    BAI H C, LUO M, WEI S Q,et al. The vital function of humic acid with different molecular weight in controlling cd and pb bioavailability and toxicity to earthworm (Eisenia fetida) in soil[J]. Environmental Pollution, 2020, 261.
    [22]
    MALANDRINO M,ABOLLINO O,BUOSO S,et al. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite[J]. Chemosphere, 2011, 82(2):169-178.
    [23]
    赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282-286.
    [24]
    崔妍,丁永生,公维民,等.土壤中重金属化学形态与植物吸收的关系[J].大连海事大学学报,2005,31(2):59-63.
    [25]
    乔庆霞,黄小凤.沘江表层底泥中重金属化学形态的研究[J].昆明理工大学学报,1999(2):3-5.
    [26]
    DOU X M,LI R,ZHAO B,et al. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples[J]. Journal of Hazardous Materials, 2010, 182(1):108-114.
    [27]
    KlÜPFEL L,KEILUWEIT M,KLEBER M,et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science&Technology, 2014, 48(10):5601-5611.
    [28]
    鲁秀国,武今巾,郑宇佳.核桃壳生物炭对土壤中镉的钝化修复[J].环境工程,2020,38(11):196-202.
    [29]
    王向琴,刘传平,杜衍红,等.零价铁与腐殖质复合调理剂对稻田镉砷污染钝化的效果研究[J].生态环境学报,2018,27(12):2329-2336.
    [30]
    高晓宁.土壤重金属污染现状及修复技术研究进展[J].现代农业科技,2013(9):229-231.
  • Relative Articles

    [1]XU Yi, JIANG Xu, XU Yingming. EFFECT OF ADDING KNO3 AND KH2PO4 ON IMMOBILIZATION REMEDIATION OF CADMIUM IN POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 229-236. doi: 10.13205/j.hjgc.202412027
    [2]HUANG Xiao, LAI Junbei, LIANG Yaoyun, ZHU Gaoming, YU Jianghua, GAO Jingsi. OCCURRENCE, MIGRATION AND TRANSFORMATION OF EMERGING TRACE POLLUTANTS IN RECLAIMED WATER DURING RIVER RECHARGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 25-37. doi: 10.13205/j.hjgc.202407003
    [3]ZHOU Ziyan, HUANG Xiang, GU Jinchuan, XUE Jia, WU Yi, YONG Yi. PASSIVATION OF ZINC, LEAD AND CADMIUM CONTAMINATED SOIL BY INORGANIC SALT MODIFIED BENTONITE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 150-158. doi: 10.13205/j.hjgc.202307021
    [4]YANG Shu, ZHOU Honghui, LI Ying, ZHANG Yun, TIAN Senlin, CHENG Xia, HU Han, HU Xuewei. EFFECT OF SAPONIN ON BIOLOGICAL OXIDATION OF PYRITE-CONTAINING SOLID WASTE FROM MINING AND DRESSING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 129-135,215. doi: 10.13205/j.hjgc.202303017
    [5]MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
    [6]ZHANG Yuchen, CHEN Xiaoduo, GUI Si, SU Hua, ZHANG Weifang, LIU Changqing, WU Chunshan, ZHENG Yuyi. MINERAL COMPONENTS AND HEAVY METAL POLLUTION CHARACTERISTICS IN WASTE INCINERATION FLY ASH IN FUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 102-109. doi: 10.13205/j.hjgc.202208014
    [7]LI Yalin, LI Peng, TANG Yifan, ZHANG Wei, WANG Enci, JIN Mingyu. IMPACT OF DC VOLTAGE ON ELECTRO-REMEDIATION OF Pb AND As CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 131-135,184. doi: 10.13205/j.hjgc.202208018
    [8]MAO Xinyu, YU Huaizhi, ZHAI Senmao, JIANG Xiaosan, XU Zhou, WANG Qilin. LONG-TERM STABILIZATION EFFECT AND ECOLOGICAL RISK ASSESSMENT OF SOIL CADMIUM AND LEAD BY USING MODIFIED COCONUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 140-146. doi: 10.13205/j.hjgc.202204020
    [9]LI Zhijian, WEI Li, NI Heng. RESEARCH ADVANCES AND CASE STUDY ON PASSIVATION AND CLOGGING IN PERMEABLE REACTIVE BARRIER(PRB)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 206-213,224. doi: 10.13205/j.hjgc.202202031
    [10]ZHOU Ying, WANG Xue-mei, JIANG Yu-zhuo, ZHAO Yun-feng, JI Hong-bing. SPECIATION AND ECOLOGICAL RISK ASSESSMENT OF ARSENIC AND MERCURY IN SOIL AROUND A GOLD MINING AREA IN PINGGU DISTRICT, BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 203-210,164. doi: 10.13205/j.hjgc.202108028
    [11]ZHANG Li, GUO Chao-hui, RAN Hong-zhen, XIAO Xi-yuan, HU Zhi-hao, LI Zhang-zhou. PARTICLE SIZE AND OCCURRENCE CHARACTERISTICS OF ARSENIC IN RIVER SEDIMENTS OF ARSENIC-BEARING MINE AREAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 38-43,119. doi: 10.13205/j.hjgc.202112006
    [12]PENG Yan, CHEN Di-yun, CHEN Nan, ZENG Lin-wei. PASSIVATION EFFECT OF CALCIUM PHOSPHATE ON URANIUM IN SEDIMENTS IN DOWNSTREAM WATERS OF A URANIUM MINE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 13-19,24. doi: 10.13205/j.hjgc.202104003
    [13]ZHANG Xiang-lu, LIU You-yan, LU Yu-hao, TANG Ai-xing. EXTRACELLULAR POLYMERIC SUBSTANCES OF ASPERGILLUS TUBINGENSIS AND BENTONITE PASSIVATION SOIL LEAD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 171-177,183. doi: 10.13205/j.hjgc.202105024
    [14]ZHOU Wen-wu, CHEN Guan-yi, DAN Zeng, QIONGDA Zhuo-ma, ZHOU Peng, WANG Jing. COMPARISON AND SELECTION OF REHABILITATION SCHEMES FOR GROUNDWATER LEAD IN LANDFILL AREA: A CASE STUDY OF LHASA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 88-93. doi: 10.13205/j.hjgc.202006014
    [15]WANG Yu, ZHUANG Xu-ning, MAO Shao-hua, GU Wei-hua, BAI Jian-feng. ANALYSIS OF TOXIC AND HARMFUL METALS CONTENT AND ECOLOGICAL RISK IN WASTE LCD PANELS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 117-121. doi: 10.13205/j.hjgc.202001018
    [19]Luo Ting, Jiang Zhenmao, Ren Zhijie, Zhou Meizhu, Zhou Hongguang. PREPARATION AND PERFORMANCE OF RESIN BASED NANOSCALE ZERO VALENT IRON COMPOSITES FOR REMOVAL OF Pb( Ⅱ) IN WATER SOLUTION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 1-4. doi: 10.13205/j.hjgc.201505001
    [20]Cong Jing Yan Dahai Li Li Jiang Xuguang Zhou Yingnan He Jie Wang Qi, . CONDENSATION AND ABSORPTION KINETICS OF THE CEMENT RAW MEAL ON LEAD AND CADMIUM AT LOW-TEMPERATURES DURING CO-PROCESSING IN CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 103-107. doi: 10.13205/j.hjgc.201504022
  • Cited by

    Periodical cited type(5)

    1. 刘龙宇,杨世利,赵黄诗雨,常凯威,余江. 赤泥基纳米零价铁对多金属污染土壤修复效果. 环境科学. 2024(04): 2473-2478 .
    2. 季晓莲,李松. 固体废弃物材料的改性及对重金属修复实验. 化学工程师. 2024(09): 5-8+94 .
    3. 方艳玲,段毅,周书葵,刘迎九,向立平,邹威燕. 钝化材料修复土壤重金属污染研究进展. 有色金属(冶炼部分). 2023(03): 123-131 .
    4. 黄海涛,王崇,耿康慧,魏彩春,靳振江. 富里酸对生物成因次生高铁矿物形成的影响. 科学技术与工程. 2023(08): 3559-3568 .
    5. 逯秋源,樊丽,姚芸,熊骏,关杰. 植物联合修复土壤重金属污染的研究进展. 四川环境. 2023(04): 319-327 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.7 %FULLTEXT: 17.7 %META: 81.8 %META: 81.8 %PDF: 0.5 %PDF: 0.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.2 %其他: 20.2 %Canton: 0.5 %Canton: 0.5 %Perth Amboy: 0.5 %Perth Amboy: 0.5 %[]: 0.5 %[]: 0.5 %上海: 2.5 %上海: 2.5 %临汾: 0.5 %临汾: 0.5 %保定: 0.5 %保定: 0.5 %兰州: 0.5 %兰州: 0.5 %北京: 1.0 %北京: 1.0 %十堰: 0.5 %十堰: 0.5 %台州: 1.5 %台州: 1.5 %大理: 1.5 %大理: 1.5 %太原: 0.5 %太原: 0.5 %密蘇里城: 0.5 %密蘇里城: 0.5 %常德: 0.5 %常德: 0.5 %张家口: 1.5 %张家口: 1.5 %得克萨斯州: 0.5 %得克萨斯州: 0.5 %成都: 1.0 %成都: 1.0 %昆明: 0.5 %昆明: 0.5 %晋城: 2.0 %晋城: 2.0 %朝阳: 1.0 %朝阳: 1.0 %杭州: 6.1 %杭州: 6.1 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.5 %沈阳: 0.5 %洛阳: 1.0 %洛阳: 1.0 %济源: 0.5 %济源: 0.5 %湖州: 1.0 %湖州: 1.0 %漯河: 1.5 %漯河: 1.5 %瑟普赖斯: 1.5 %瑟普赖斯: 1.5 %石家庄: 1.5 %石家庄: 1.5 %绵阳: 1.5 %绵阳: 1.5 %罗利: 0.5 %罗利: 0.5 %芒廷维尤: 35.9 %芒廷维尤: 35.9 %西宁: 3.0 %西宁: 3.0 %贵阳: 0.5 %贵阳: 0.5 %运城: 4.5 %运城: 4.5 %遵义: 0.5 %遵义: 0.5 %郑州: 0.5 %郑州: 0.5 %雷德蒙德: 0.5 %雷德蒙德: 0.5 %其他CantonPerth Amboy[]上海临汾保定兰州北京十堰台州大理太原密蘇里城常德张家口得克萨斯州成都昆明晋城朝阳杭州武汉沈阳洛阳济源湖州漯河瑟普赖斯石家庄绵阳罗利芒廷维尤西宁贵阳运城遵义郑州雷德蒙德

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (161) PDF downloads(1) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return