Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YUAN Mingzhu, DING Lei, LI Shuang, LI Yonglian. COMPARATIVE STUDY ON REMOVAL OF ARSENIC AND ANTIMONY FROM SPENT EDTA SOIL WASHING SOLUTION BY IRON/ALUMINUM COAGULATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 121-126. doi: 10.13205/j.hjgc.202204017
Citation: YUAN Mingzhu, DING Lei, LI Shuang, LI Yonglian. COMPARATIVE STUDY ON REMOVAL OF ARSENIC AND ANTIMONY FROM SPENT EDTA SOIL WASHING SOLUTION BY IRON/ALUMINUM COAGULATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 121-126. doi: 10.13205/j.hjgc.202204017

COMPARATIVE STUDY ON REMOVAL OF ARSENIC AND ANTIMONY FROM SPENT EDTA SOIL WASHING SOLUTION BY IRON/ALUMINUM COAGULATION PROCESS

doi: 10.13205/j.hjgc.202204017
  • Received Date: 2021-05-31
    Available Online: 2022-07-06
  • In the experiment, the removal efficiencies of As(Ⅴ) and Sb(Ⅴ) by coagulation process were comparatively studied when ferric chloride (FeCl3) and aluminum chloride (AlCl3) were used as coagulant separately, while the effects of the reaction endpoint pH, EDTA concentration, Fe/Al dosage and the coexistence of heavy metals on removal of As(Ⅴ) and Sb(Ⅴ) from spent EDTA soil washing solution were mainly discussed. The results showed that: 1) aluminum salt was more effective than iron salt in the removal of As(Ⅴ) and Sb(Ⅴ) from spent EDTA washing solution by coagulation process; 2) the presence of EDTA not only reduced the removal of As(Ⅴ) and Sb(Ⅴ) by the adsorption of iron/aluminum flocs, but also inhibited the formation of iron arsenate, iron antimonite precipitates, in which the removal of As(Ⅴ) and Sb(Ⅴ) decreased simultaneously. Larger size and quantity of stable crystalline precipitate was formed during iron coagulation process with EDTA; 3) when c(EDTA)=0.05 mg/L, the removal efficiency of As(Ⅴ) and Sb(Ⅴ) in the spent EDTA washing solution by aluminum coagulation was up to 98.00% and 93.09%, respectively, with pH=5 and ρ(Al)=2000 mg/L; 4) the formation of Al(OH)3 flocs was enhanced to promote the removal of As(Ⅴ) and Sb(Ⅴ) when the coexisting heavy metals complexed with EDTA. The effective removal of As(Ⅴ) and Sb(Ⅴ) from spent EDTA soil washing solution by iron/alumiaum coagulation will promote the development and application of EDTA-based soil washing technologies.
  • [1]
    刘乃静,李臻,赵银鑫,等.吴忠市表层土壤重金属污染及其潜在生态风险评价[J].科学技术与工程,2020, 20(17):7114-7121.
    [2]
    胡疆.利用淋洗剂组合去除土壤中重金属及淋洗液回收技术研究[D].长沙:湖南农业大学,2015.
    [3]
    张富贵,彭敏,王惠艳,等.基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J].环境科学,2020, 41(9):4197-4209.
    [4]
    谢运河,纪雄辉,吴家梅,等.不同有机肥对土壤镉锌生物有效性的影响[J].应用生态学报,2015, 26(3):826-832.
    [5]
    LESTAN D, LUO C L, LI X D. The use of chelating agents in the remediation of metal-contaminated soils:a review[J]. Environmental Pollution, 2008, 153(1):3-13.
    [6]
    GUO X F, ZHAO G H, ZHANG G X, et al. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties[J]. Chemosphere, 2018, 209:776-782.
    [7]
    LIAO X Y, LI Y, YAN X L. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process[J]. Journal of Environmental Sciences, 2016, 41(3):202-210.
    [8]
    陈寻峰,李小明,陈灿,等.砷污染土壤复合淋洗修复技术研究[J].环境科学,2016, 37(3):1147-1155.
    [9]
    孙浩然.螯合剂淋洗修复土壤中As、Sb污染物实验研究[D].贵阳:贵州大学,2016.
    [10]
    WANG Q W, CHEN J J, ZHENG A H, et al. Dechelation of Cd-EDTA complex and recovery of EDTA from simulated soil-washing solution with sodium sulfide[J]. Chemosphere, 2019, 220:1200-1207.
    [11]
    GILES D E, MOHAPATRA M, ISSA T B, et al. Iron and aluminium based adsorption strategies for removing arsenic from water[J]. Journal of Environmental Management, 2011, 92(12):3011-3022.
    [12]
    GUO W J, FU Z Y, WANG H, et al. Removal of antimonate (Sb (Ⅴ)) and antimonite (Sb (Ⅲ)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS):dependence on influencing factors and insights into removal mechanisms[J]. Science of the Total Environment, 2018, 644:1277-1285.
    [13]
    陈桂霞,胡承志,朱灵峰,等.铝盐混凝除砷影响因素及机制研究[J].环境科学,2013, 34(4):1386-1391.
    [14]
    WANG Y L, LV C C, XIAO L, et al. Arsenic removal from alkaline leaching solution using Fe (Ⅲ) precipitation[J]. Environmental Technology, 2019, 40(13):1714-1720.
    [15]
    KOPARAL A S,ÖZGÜR R, ÖǦÜTVEREN Ü B, et al. Antimony removal from model acid solutions by electrodeposition[J]. Separation and Purification Technology, 2004, 37(2):107-116.
    [16]
    NOWACK B, KARI F G, HILGER S U, et al. Determination of dissolved and adsorbed EDTA species in water and sediments by HPLC[J]. Analytical Chemistry, 1996, 68(3):561-566.
    [17]
    AMSTAETTER K, BORCH T, LARESE-CASANOVA P, et al. Redox transformation of arsenic by Fe (Ⅱ)-activated goethite (α-FeOOH)[J]. Environmental Science&Technology, 2010, 44(1):102-108.
    [18]
    ZHANG T T, ZHAO Y L, KANG S C, et al. Formation of active Fe (OH)3 in situ for enhancing arsenic removal from water by the oxidation of Fe (Ⅱ) in air with the presence of CaCO3[J]. Journal of Cleaner Production, 2019, 227:1-9.
    [19]
    ANDEREGG G, ARNAUD-NEU F, DELGADO R, et al. Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications (IUPAC Technical Report)[J]. Pure&Applied Chemistry, 2005, 77(8):1445-1495.
    [20]
    GUO X J, WU Z J, HE M C. Removal of antimony (Ⅴ) and antimony (Ⅲ) from drinking water by coagulation-flocculation-sedimentation (CFS)[J]. Water Research, 2009, 43(17):4327-4235.
    [21]
    王文龙,胡洪营,刘玉红,等.混凝和强化混凝对印染废水中锑(Ⅴ)的去除特性[J].环境科学学报,2019, 39(10):3374-3380.
    [22]
    YANG K L, ZHOU J S, LOU Z M, et al. Removal of Sb (Ⅴ) from aqueous solutions using Fe-Mn binary oxides:the influence of iron oxides forms and the role of manganese oxides[J]. Chemical Engineering Journal, 2018, 354:577-588.
    [23]
    MERTENS J, CASENTINI B, MASION A, et al. Polyaluminum chloride with high Al30 content as removal agent for arsenic-contaminated well water[J]. Water Research, 2012, 46(1):53-62.
  • Relative Articles

    [1]LI Zhenhua. AN EXPERIMENTAL STUDY ON HIGH EFFICIENCY INTERCEPTION AND PURIFICATION FOR URBAN RAINWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 108-115. doi: 10.13205/j.hjgc.202412014
    [2]XIAO Han, HAN Zhi-wei, XIONG Jia, LUO Guang-fei, TIAN Yu-tong, YANG Miao. BIOAVAILABILITY AND ECOLOGICAL RISK ASSESSMENT OF Sb AND As IN TAILINGS OF QINGLONG ANTIMONY MINE IN GUIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 123-132. doi: 10.13205/j.hjgc.202205018
    [3]YANG Tao, CHEN Jingyu, SUN Xiaoshuang, HUANGFU Zhuoxi, YU Jiang. ADSORPTION PROPERTIES OF MAGNETIC COCONUT SHELL FOR As(Ⅲ) IN SOIL LEACHING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 86-93. doi: 10.13205/j.hjgc.202201013
    [4]KONG Fan-xin, XIAO Wei-hao, HE Jian-hua, CHEN Jin-fu. CERAMIC MEMBRANE ENHANCED TREATMENT OF POLYMER FLOODING PRODUCED WATER IN HIGH CALCIUM AND MAGNESIUM RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 128-132,72. doi: 10.13205/j.hjgc.202107016
    [7]Zhang Lei Zhang Yongli Liang Ying, . EXPERIMENTAL STUDY ON TREATMENT OF WATER-BASED INK WASTEWATER BY COAGULATION-BAF[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 1-3. doi: 10.13205/j.hjgc.201504001
  • Cited by

    Periodical cited type(2)

    1. 王靖文,曹斐姝,唐万鹏,谢冬燕,颜德鹏,陈建平,陈俊先,刘松豪,林宏飞. 分步连续沉淀法对锑砷污染土壤淋洗废液的回收及净化. 有色金属(冶炼部分). 2023(08): 159-166 .
    2. 侍远. 基于EDTA及其回收溶液治理重金属污染土壤探究. 皮革制作与环保科技. 2023(23): 104-106 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.1 %FULLTEXT: 13.1 %META: 84.6 %META: 84.6 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.2 %其他: 20.2 %[]: 0.4 %[]: 0.4 %上海: 1.1 %上海: 1.1 %东莞: 1.9 %东莞: 1.9 %临汾: 0.4 %临汾: 0.4 %保定: 0.4 %保定: 0.4 %北京: 1.9 %北京: 1.9 %十堰: 0.4 %十堰: 0.4 %南京: 0.4 %南京: 0.4 %吴忠: 0.7 %吴忠: 0.7 %哈尔滨: 0.4 %哈尔滨: 0.4 %天津: 1.5 %天津: 1.5 %常德: 0.4 %常德: 0.4 %张家口: 2.2 %张家口: 2.2 %成都: 0.4 %成都: 0.4 %无锡: 0.4 %无锡: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.7 %杭州: 0.7 %武汉: 1.9 %武汉: 1.9 %沈阳: 0.4 %沈阳: 0.4 %济南: 3.0 %济南: 3.0 %济源: 0.7 %济源: 0.7 %湖州: 0.7 %湖州: 0.7 %湘潭: 0.4 %湘潭: 0.4 %漯河: 3.4 %漯河: 3.4 %焦作: 0.7 %焦作: 0.7 %石家庄: 1.1 %石家庄: 1.1 %芒廷维尤: 28.5 %芒廷维尤: 28.5 %芝加哥: 1.5 %芝加哥: 1.5 %衢州: 0.7 %衢州: 0.7 %西宁: 8.6 %西宁: 8.6 %贵阳: 1.5 %贵阳: 1.5 %资阳: 0.4 %资阳: 0.4 %运城: 3.4 %运城: 3.4 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.7 %郑州: 0.7 %长沙: 1.5 %长沙: 1.5 %长治: 0.4 %长治: 0.4 %阿克萨赖: 4.5 %阿克萨赖: 4.5 %其他[]上海东莞临汾保定北京十堰南京吴忠哈尔滨天津常德张家口成都无锡昆明晋城朝阳杭州武汉沈阳济南济源湖州湘潭漯河焦作石家庄芒廷维尤芝加哥衢州西宁贵阳资阳运城遵义邯郸郑州长沙长治阿克萨赖

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (225) PDF downloads(8) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return