Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Xiaojie, ZHANG Wenwen, MA Chuanbo, MA Fujun, GU Qingbao, XU Duanping. REMOVAL OF BENZENE FROM CLAY SOIL IN NORTHEASTERN CHINA BY THERMAL ENHANCED SOIL VAPOR EXTRACTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 134-139,187. doi: 10.13205/j.hjgc.202204019
Citation: LI Xiaojie, ZHANG Wenwen, MA Chuanbo, MA Fujun, GU Qingbao, XU Duanping. REMOVAL OF BENZENE FROM CLAY SOIL IN NORTHEASTERN CHINA BY THERMAL ENHANCED SOIL VAPOR EXTRACTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 134-139,187. doi: 10.13205/j.hjgc.202204019

REMOVAL OF BENZENE FROM CLAY SOIL IN NORTHEASTERN CHINA BY THERMAL ENHANCED SOIL VAPOR EXTRACTION

doi: 10.13205/j.hjgc.202204019
  • Received Date: 2021-08-05
    Available Online: 2022-07-06
  • Taking the clay in Northeastern China as the research object, the contaminated soil was simulated, and the effects of extraction rate, soil water content and thermal enhancement on the remediation of benzene-contaminated soil by soil vapor extraction were studied. At the same time, the heat transfer effect of soil with different water content and the variation law of soil temperature under the heating condition of central heat source were explored. The results showed that: 1) the best pumping rate for the remediation of benzene-contaminated soil by soil vapor extraction was 10 L/min; 2) in the clay soil with water content of 5%~20%, the remediation effect of soil vapor extraction decreased with the increase of soil water content, but under the effect of thermal enhancement, the repair effect decreased and then increased with the increase of soil water content, and the repair effect was the best when the water content was 5%; 3) under the condition of central heat source heating, the soil temperature showed nonlinear attenuation along the radial direction from the heat source, and the attenuation was more obvious near the heat source point; 4) when thermal enhanced soil vapor extraction was used to repair benzene-contaminated clay, the restoration performance were best when the temperature of the central heat source was 160 ℃.
  • [1]
    刘利丹.东北地区典型土壤植硅体的迁移,保存规律及其古环境应用[D].长春:东北师范大学,2017.
    [2]
    ZHANG M, LIANG W J, XIAO K, et al. Soil nematode abundance and diversity in different forest types at changbai mountain, China[J]. ZOOL STUD, 2012, 51(5):619-626.
    [3]
    吴云.大力发展石油化工产业,振兴东北老工业基地[J].长春理工大学学报(社会科学版),2007,20(1):7-9.
    [4]
    夏昭林,孙品,张忠彬,等.苯的职业健康危害研究的回顾与展望[J].中华劳动卫生职业病杂志,2005,23(4):241-243.
    [5]
    SIMPANEN S, DAN Y, R MÄKELÄ, et al. Soil vapor extraction of wet gasoline-contaminated soil made possible by electroosmotic dewatering-lab simulations applied at a field site[J]. Journal of Soils&Sediments, 2018,18:3303-3309.
    [6]
    罗成成,张焕祯,毕璐莎,等.气相抽提技术修复石油类污染土壤的研究进展[J].环境工程,2015,33(10):158-162.
    [7]
    李斌.工业企业废弃场地有机污染土壤修复技术研究探析[J].石化技术,2020,27(7):62,79.
    [8]
    史俊祥.基于SVE的土壤苯系物优化去除研究[D].南昌:南昌大学,2020.
    [9]
    姚佳斌,张语情,蒋尚,等.气相抽提技术在有机物污染场地中的应用[J].节能与环保,2021(1):69-70.
    [10]
    BRIAN C, KIRTLAND, C MARJORIE A. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction:impact of continuous or pulsed operation[J]. Journal of Contaminant Hydrology, 2000, 41(3):367-383.
    [11]
    ZHAN H B, PARK E. Vapor flow to horizontal wells in unsaturated zones[J]. Soil Science Society of America Journal, 2002, 66(3):710-721.
    [12]
    FRANK U, BARKLEY N. Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction[J]. Journal of Hazardous Materials, 1995, 40(2):191-201.
    [13]
    张永明.气相抽提技术修复石油化工污染场地[D].广州:华南理工大学,2020.
    [14]
    RATHFELDER K,LANG J R,ABRIOLA L M. Soil vapor extraction and bioventing:applications, limitations, and future research directions[J]. Reviews of Geophysics, 1995, 33:1067.
    [15]
    LIM M W,LAU E V,POH P E. A comprehensive guide of remediation technologies for oil contaminated soil-Present works and future directions[J]. Marine Pollution Bulletin, 2016, 109(1):14-45.
    [16]
    梅志华,赵申.热强化气相抽提法在某有机污染场地的中试应用[J].化工管理,2015(11):167-168.
    [17]
    ZHANG Q X,FENG Q Y, ZHU X Q, et al. Box experiment study of thermally enhanced SVE for benzene[J]. International Journal of Environmental Research and Public Health, 2021, 18(8):4062.
    [18]
    MOHAMED A M I, EL-MENSHAWY N, SAIF A M. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement[J]. Journal of Environmental Management, 2007, 83(3):339-350.
    [19]
    POPPENDIECK D G,LOEHR RC,WEBSTER MT.Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems:1. Laboratory studies[J].Journal of Hazardous Materials,1999,69(1):81-93.
    [20]
    杨伟,宋震宇,李野,等.射频加热强化土壤气相抽提技术的应用[J].环境工程学报,2015,9(3):1483-1488.
    [21]
    HERON G,PARKER K,GALLIGAN J, et al. Thermal treatment of eight CVOC source zones to near nondetect concentrations[J]. Groundwater Monitoring&Remediation, 2010, 29(3):56-65.
    [22]
    康文慧.热强化气相抽提修复半挥发性直链烃污染土壤的影响因素研究[D].大连:大连海事大学,2020.
    [23]
    朱杰,罗启仕,李心倩.热传导强化气相抽提处理苯系物污染土壤实验[J].环境化学,2013,32(8):1546-1553.
    [24]
    于颖,邵子婴,刘靓,等.热强化气相抽提法修复半挥发性石油烃污染土壤的影响因素[J].环境工程学报,2017,11(4):2522-2527.
    [25]
    ALBERGARIA J,DA CONCEICAO M,ALVIM-FERRAZ M,et al. Remediation efficiency of vapour extraction of sandy soils contaminated with cyclohexane:influence of air flow rate, water and natural organic matter content[J].Environmental Pollution,2006,143(1):146-152.
    [26]
    周友亚,贺晓珍,侯红,等.气相抽提法去除土壤中的苯和乙苯[J].化工学报,2009,60(10):2590-2595.
    [27]
    黄茜,魏明俐.土壤气相抽提修复甲苯污染土的过程研究[C]//环境工程2019年全国学术年会,武汉,2019.
    [28]
    何睿,杨勇,梁文莲,等.苯系物污染土壤热强化气相抽提技术研究[J].环境保护科学,2021,47(2):167-171.
    [29]
    殷甫祥.气相抽提法(SVE)去除污染土壤中挥发性有机物(VOCs)的技术研究[D].扬州,扬州大学,2010.
    [30]
    罗成成.气相抽提技术修复柴油污染土壤的实验研究[D].北京:中国地质大学,2016.
    [31]
    刘少卿,姜林,姚珏君,等.土壤质地和湿度对SVE技术修复苯污染土壤的影响[J].环境科学,2012,33(5):1731-1735.
    [32]
    郭昊.热强化气相抽提去除土壤中三氯乙烯的试验研究[D].郑州:华北水利水电大学,2020.
    [33]
    戚圣琦,侯德义,王轶冬,等. VOCs相间非平衡态迁移对土壤修复效果的影响[J].环境科学研究,2021,34(6):1464-1472.
    [34]
    杨玉洁,王春雨,沙雪华,等.烃类污染土壤热强化气相抽提技术的脱附动力学[J].环境工程学报,2019,13(10):2328-2335.
  • Relative Articles

    [1]CHEN Shiyuan, CHEN Jixiang, WANG Yonggang, YANG Yanwu, ZHANG Bowen. FORMATION OF VIABLE BUT NON-CULTURABLE STATE OF RHODOCOCCUS ERYTHROPOLIS KB1 INDUCED BY HIGH CONCENTRATION BENZENE AND CHARACTERISTICS ITS RESUSCITATED CELLS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 184-190. doi: 10.13205/j.hjgc.202401024
    [2]HOU Pin, ZHANG Yu, PENG Lian, ZHAO Junhui, BU Qingwei, WANG Jianbing, BEN Weiwei, QIANG Zhimin. A DETECTION METHOD FOR TRACE BENZO (a) PYRENE IN COKING WASTEWATER BY SOLID-PHASE EXTRACTION AND GC-MS ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 159-164,185. doi: DOI:10.13205/j.hjgc.202207023
    [3]FAN Meirong, ZHANG Shangyi, YANG Yanmei, YANG Jinzhong, YANG Yufei, XIE Zhen. THERMAL DECOMPOSITION LAW OF BDE-209 IN CEMENT KILN UNDER THERMAL CONDITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 98-104,111. doi: 10.13205/j.hjgc.202210013
    [4]LI Qin, LIAO Cai-neng, LIAO Ming-xu, PENG Dao-ping, HUANG Tao. MECHANISMS CONTROLLING HYDRAULIC CONDUCTIVITY OF BENTONITE CLAY LINERS WITH BAUXITE LIQUOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 148-153. doi: 10.13205/j.hjgc.202101023
    [5]ZHAO Tao, ZHOU Yu, MA Gang-ping, LI Shi-qing, CAO Xue-long. EXPERIMENTAL STUDY ON RESTORATION EFFECT OF IN SITU THERMAL DESORPTION IN COKING CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 201-205. doi: 10.13205/j.hjgc.202104030
    [12]Luo Chengcheng Zhang Huanzhen Bi Lusha Zhu Hong, . PROGRESS ON REHABILITATING OIL CONTAMINATED SOIL BY SVE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 158-162. doi: 10.13205/j.hjgc.201510035
  • Cited by

    Periodical cited type(5)

    1. 高玉苗,刘冠军. 土壤气相抽提技术在有机物污染场地中的研究及应用进展. 天津化工. 2024(02): 4-6 .
    2. 李玉萍,樊宝云,董康冉,万金忠,艾英钵,王保田. 热脱附修复石油烃污染土壤室内试验研究. 环境工程. 2024(04): 242-249 . 本站查看
    3. 徐爱峰. 不同水生植物对污染水体中重金属及有机污染物去除效果研究. 精细化工中间体. 2024(03): 60-64 .
    4. 胡阳. 有机污染土壤治理修复技术综述. 广州化工. 2024(19): 143-145 .
    5. 孙建强,徐健,张安平. 相间非平衡态迁移对土壤苯系物修复的影响. 浙江工业大学学报. 2023(04): 466-472 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.2 %FULLTEXT: 22.2 %META: 75.1 %META: 75.1 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.9 %其他: 21.9 %[]: 0.3 %[]: 0.3 %上海: 1.2 %上海: 1.2 %上饶: 0.3 %上饶: 0.3 %东莞: 0.6 %东莞: 0.6 %临汾: 0.3 %临汾: 0.3 %保定: 0.6 %保定: 0.6 %加利福尼亚: 0.9 %加利福尼亚: 0.9 %北京: 2.7 %北京: 2.7 %南京: 0.9 %南京: 0.9 %台州: 0.6 %台州: 0.6 %大连: 0.3 %大连: 0.3 %天津: 0.9 %天津: 0.9 %安顺: 0.3 %安顺: 0.3 %宿州: 0.3 %宿州: 0.3 %常德: 0.3 %常德: 0.3 %张家口: 0.9 %张家口: 0.9 %徐州: 0.6 %徐州: 0.6 %成都: 1.2 %成都: 1.2 %扬州: 0.6 %扬州: 0.6 %无锡: 2.7 %无锡: 2.7 %昆明: 0.6 %昆明: 0.6 %晋中: 0.3 %晋中: 0.3 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.3 %杭州: 0.3 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.3 %沈阳: 0.3 %济源: 0.3 %济源: 0.3 %深圳: 0.3 %深圳: 0.3 %湖州: 0.6 %湖州: 0.6 %漯河: 0.9 %漯河: 0.9 %盐城: 0.3 %盐城: 0.3 %石家庄: 0.6 %石家庄: 0.6 %芒廷维尤: 41.4 %芒廷维尤: 41.4 %苏州: 0.6 %苏州: 0.6 %西宁: 8.0 %西宁: 8.0 %西安: 0.9 %西安: 0.9 %贵阳: 0.3 %贵阳: 0.3 %运城: 3.0 %运城: 3.0 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.6 %郑州: 0.6 %重庆: 0.3 %重庆: 0.3 %长治: 0.6 %长治: 0.6 %其他[]上海上饶东莞临汾保定加利福尼亚北京南京台州大连天津安顺宿州常德张家口徐州成都扬州无锡昆明晋中晋城朝阳杭州武汉沈阳济源深圳湖州漯河盐城石家庄芒廷维尤苏州西宁西安贵阳运城遵义邯郸郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (253) PDF downloads(9) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return