Citation: | YUAN Xiaomei, WANG Ying, XU Xin, WANG Wei, WEI Haisheng. CATALYTIC REDUCTION OF NITRATE IN WATER BY Pd-Cu@UiO-66[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 147-152. doi: 10.13205/j.hjgc.202204021 |
[1] |
JIU T L, YU M P, LI C, et al. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health[J]. Environmental Pollution, 2021, 268(8):115947.
|
[2] |
EUN H K, EUNHEE L, KANG K L, et al. Application of geographically weighted regression models to predict spatial characteristics of nitrate contamination:implications for an effective groundwater management strategy[J]. Journal of Environmental Management, 2020, 268:110646.
|
[3] |
林珊,韦会松,刘俊菊.农村地下水中硝酸盐污染状况及原因分析[J].中国卫生产业, 2019, 16(22):154-155.
|
[4] |
AYERS J R, VILLARINI G, SCHILLING K, et al. Development of statistical models for estimating daily nitrate load in iowa[J]. Science of the Total Environment, 2021, 782:146643.
|
[5] |
XIN Z, YAN Z, PENG S, et al. The deep challenge of nitrate pollution in river water of China[J]. Science of the Total Environment, 2021, 770(25):144674.
|
[6] |
袁寒艳,厉志玉,盛雪飞,等.一起亚硝酸盐引起的食源性疾病调查报告[J].预防医学, 2017, 29(3):280-281
,292.
|
[7] |
KIELEMOES J, BOEVER P, VERSTRAETE W, et al. Influence of denitrification on the corrosion of iron and stainless steel powder[J]. Environmental Science and Technology, 2000, 34(4):663-671.
|
[8] |
YONG H H, TIAN C Z. Enhancement of nitrate reduction in Fe 0-packed columns by selected cations[J]. Journal of Environmental Engineering, 2005, 131(4):603-611.
|
[9] |
费宇雷,曹国民,张立辉,等.离子交换树脂脱除地下水中的硝酸盐[J].净水技术, 2011, 30(1):20-24.
|
[10] |
郭康贤,莫新来,谭子斌,等.基于膜分离技术的脱硝原理及工艺[J].广东化工, 2011, 38(10):97-98.
|
[11] |
VORLOP K D, TACKE T. Erste schritte auf dem weg zur edelmetallkatalysierten nitrat-und nitrit-entfernung aus trinkwasser[J]. Chemie Ingenieur Technik, 1989, 61(10):836-837.
|
[12] |
MARTINEZ J, ORTIZ I. State-of-the-art and perspectives of the catalytic and electro catalytic reduction of aqueous nitrates[J]. Applied Catalysis B:Environmental, 2017, 207:42-59.
|
[13] |
EPRON F, GAUTHARD F, PINÉDA C, et al. Catalytic reduction of nitrate and nitrite on Pt-Cu/Al2O3 catalysts in aqueous solution:role of the interaction between copper and platinum in the reaction[J]. Journal of Catalysis, 2001, 198(2):309-318.
|
[14] |
ZHANG Z Q, XU Y P, SHI W X, et al. Electrochemical catalytic reduction of nitrate over Pd-Cu/γAl2O3 catalyst in cathode chamber:enhanced removal efficiency and N2 selectivity[J]. Chemical Engineering Journal, 2016, 290:201-208.
|
[15] |
云玉攀,梁钊,朱振亚,等. Pd-Cu/石墨烯协同零价铁(Fe0)的催化反硝化实验[J].环境工程, 2021, 39(1):70-74
, 165.
|
[16] |
TAN C L, CAN X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaters[J]. Chemical Reviews, 2017, 117(9):6225-6331.
|
[17] |
KIM S, MUHAMMAD R, SCHUETZENDUEBE P, et al. Hybrids of Pd nanoparticles and metal-organic frameworks for enhanced magnetism[J]. Journal of Physical Chemistry Letters, 2021, 12(19):4742-4748.
|
[18] |
WANG Y H, CHUANG C H, CHIU T A, et al. Size-tunable synthesis of palladium nanoparticles confined within topologically distinct metal-organic frameworks for catalytic dehydrogenation of methanol[J]. The Journal of Physical Chemistry C, 2020, 124(23):12521-12530.
|
[19] |
WANG F F, WANG Q W, CHEN X J, et al. Theoretical investigations on the effect of the functional group of Pd@UiO-66 for formic acid dehydrogenation[J]. The Journal of Physical Chemistry C, 2020, 124(43):23738-23744.
|
[20] |
KAVAK S, KULAK H, POLAT H M, et al. Fast and selective adsorption of methylene blue from water using[BMIM][PF6]-incorporated UiO-66 and NH2-UiO-66[J]. Crystal Growth&Design, 2020, 20(6):3590-3595.
|
[21] |
AMARAJOTHI D, ANDREA S, ASIRI A M, et al. Engineering UiO-66 metal organic framework for heterogeneous catalysis[J]. ChemCatChem, 2019, 11(3):899-923.
|
[22] |
AGHILI F, GHOREYSHI A A, RAHIMPOUR A, et al. New chemistry for mixed matrix membranes:growth of continuous multilayer UiO-66-NH2 on UiO-66-NH2-based polyacrylonitrile for highly efficient separations[J]. Industrial&Engineering Chemistry Research, 2020, 59(16):7825-7838.
|
[23] |
ZHAO W W, ZHANG C Y, YAN Z G, et al. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase[J]. Journal of Chromatography A, 2014, 1370:121-128.
|
[24] |
YI F, QIAN C, MIN Q J, et al. Tailoring the properties of UiO-66 through defect engineering:a review[J]. Industrial&Engineering Chemistry Research, 2019, 58(38):17646-17659.
|
[25] |
SHEARER C G, CHAVAN S, BORDIGA S, et al. Defect engineering:tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis[J]. Chemistry of Materials:A Publication of the American Chemistry Society, 2016, 28(11):3749-3761.
|
[26] |
CHEN L, HUANG W, WANG X, et al. catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal-organic frameworks[J]. Chemical Communications, 2017, 53(6):1184-1187.
|
[27] |
JUNG S, BAE S, LEE W. Development of Pd-Cu/hematite catalyst for selective nitrate reduction[J]. Environmental Science&Technology, 2014, 48(16):9651-9658.
|
[28] |
王瑛,原晓梅,王玮.光沉积法制备Pd-Cu/TiO2催化还原硝酸盐的研究[J].山东化工, 2021, 50(1):64-67.
|
[29] |
LUO S X, ZENG Z T, ZENG G M, et al. Metal organic frameworks as robust host of pd nanoparticles in heterogeneous catalysis:synthesis, application and prospect[J]. ACS Applied Materials&Interfaces, 2019, 11(36):32579-32598.
|
[30] |
SHIN H, JUNG S, BAE S, et al. Nitrite reduction mechanism on a Pd surface[J]. Environmental Science&Technology, 2014, 48(21):12768-12774.
|