Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIE Haitao, LIU Liming, LIU Xiaoping, ZHAI Yunbo, HUANG Wenshui. PILOT TEST STUDY ON BORON REMOVAL BY ION EXCHANGE IN DRINKING WATER TREATMENT IN ALPINE REGIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 159-165. doi: 10.13205/j.hjgc.202204023
Citation: XIE Haitao, LIU Liming, LIU Xiaoping, ZHAI Yunbo, HUANG Wenshui. PILOT TEST STUDY ON BORON REMOVAL BY ION EXCHANGE IN DRINKING WATER TREATMENT IN ALPINE REGIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 159-165. doi: 10.13205/j.hjgc.202204023

PILOT TEST STUDY ON BORON REMOVAL BY ION EXCHANGE IN DRINKING WATER TREATMENT IN ALPINE REGIONS

doi: 10.13205/j.hjgc.202204023
  • Received Date: 2021-02-22
    Available Online: 2022-07-06
  • Temperature affects the existent forms of substances and the rate of biochemical reaction in environmental mediums. Based on this, boron selective chelating resin was used to treat the groundwater with boron concentration exceeding the standard in an alpine region. The operation parameters and performance of the process were determined by field pilot test. And the mechanism of resin boron removal was explored by FTIR, SEM and BET characterization. The results showed that the inlet velocity of 16 BV/h (bed volume; 1 BV=22.5 L) was suitable for the project, and the effluent water quality met the Hygiene Standard for Drinking Water (GB 5749—2006). The penetration point of resin column was 871.11 BV, and the exchange capacity of resin was 3.58 mg/g; the boron content of wastewater generated during resin regeneration was 342.81 mg/L, which could be used as the raw material for boron production. After the boron removal test, the hydroxyl functional group content and pore volume on the surface of the resin were reduced, and obvious wrinkles appeared on the surface, indicating that boron was removed by intra-particle diffusion and chelation process. The results of this experiment can provide theoretical support and technical reference for the treatment of boron in alpine region.
  • [1]
    HILAL N, KIM G J, SOMERFIELD C. Boron removal from saline water:a comprehensive review[J]. 2010, 273(1):23-35.
    [2]
    GUIDI L, INNOCENTI E D, CARMASSI G, et al. Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water[J]. 2010, 73:57-63.
    [3]
    YILDIRIM K, KASIM G C. Phytoremediation potential of poplar and willow species in small scale constructed wetland for boron removal[J]. 2018, 194:722-736.
    [4]
    魏春,邢小茹,张海波,等.宽甸县水中硼的背景浓度及污染现状分析[J].生态学杂志,2005,24(3):327-329.
    [5]
    XU R J, XING X R, ZHOU Q F, et al. Investigations on boron levels in drinking water sources in China[J]. Environmental Monitoring and Assessment,2010,165:15-25.
    [6]
    孙思奥,任宇飞,张蔷.多尺度视角下的青藏高原水资源短缺估算及空间格局[J].地球信息科学学报,2019,21(9):1308-1317.
    [7]
    TURKER O C, BARAN T. A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water[J]. International Journal of Phytoremediation,2018,20(2):175-183.
    [8]
    GEORGHIOU G, PASHALIDIS I. Boron in groundwaters of Nicosia (Cyprus) and its treatment by reverse osmosis[J]. Desalination,2006, 215(1):104-110.
    [9]
    侯若昕,顾平,韦晓竹,等.水中硼的去除方法研究进展[J].工业水处理,2012,32(3):14-18.
    [10]
    时玥,吴克宏.离子交换树脂脱除淡化海水中微量硼的研究进展[J].环境科学与技术,2010,33(增刊2):450-452.
    [11]
    张一帆,王志伟,安莹,等.离子交换树脂吸附铵性能研究[J].环境工程,2014,32(1):55-59.
    [12]
    罗婷,蒋珍茂,任志杰,等.树脂基纳米零价铁复合材料的制备及其去除重金属铅Pb (Ⅱ)的性能研究[J].环境工程,2015,33(5):1-4

    ,80.
    [13]
    LIU H N, YE X S, LI Q, et al. Boron adsorption using a new boron-selective hybrid gel and the commercial resin D564[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 341(1):118-126.
    [14]
    杜佳佳,屈撑囤,鱼涛.XSC-700树脂对压裂返排液中硼的吸附研究[J].化学工程,2019,47(8):29-34.
    [15]
    KALAITZIDOU K, TZIKA A M, SIMEONIDIS K, et al. Evaluation of boron uptake by anion exchange resins in tap and geothermal water matrix[J]. Materials Today:Proceedings, 2018, 5(14):27599-27606.
    [16]
    杨魁.固定床离子交换除盐系统的应用探究[J].中国设备工程,2019,4(7):132-133.
    [17]
    乔明晨,陈兴权,乔春生.废水中硼的去除工艺试验与研究[J].工业水处理,2021,41(7):130-133

    ,160.
    [18]
    KLUCZKA J, DUDEK G, KESIK A K, et al. Chitosan hydrogel beads supported with ceria for boron removal[J]. International Journal of Molecular Sciences, 2019, 20(7):1567.
    [19]
    DARWISH N B, KOCHKODAN V, HILAL N. Boron removal from water with fractionized Amberlite IRA743 resin[J]. Desalination,2015,370:1-6.
    [20]
    NALAN K. Removal of boron from seawater by selective ion exchange resins[J]. Reactive and Functional Polymers, 2007, 67(12):1643-1650.
    [21]
    ALKA T. Rapid and efficient removal of boron from deep sea water using synthesized polymer resin[J]. Desalination and Water Treatment, 2016, 57(5):2134-2141.
    [22]
    田明,李玉丹,时雅滨.固定床离子交换树脂对K+吸附特性的研究[J].离子交换与吸附,2021,37(2):175-182.
    [23]
    张亚鹏,朱洪霞,刘鑫,等.D201树脂吸附富马酸的机理及动力学分析[J].离子交换与吸附,2020,36(4):346-356.
    [24]
    江莉,高万飞.固定床离子交换除盐系统的运行优化[J].大氮肥,2016,39(3):214-216.
    [25]
    时玥,汪毅,马颖.D564树脂工艺对海水淡化中微量硼的去除[J].净水技术,2017,36(12):55-61.
    [26]
    INGLEZAKIS V J, FYRILLAS M M, PARK J. Variable diffusivity homogeneous surface diffusion model and analysis of merits and fallacies of simplified adsorption kinetics equations[J]. Journal of Hazardous Materials, 2019, 367:224-245.
    [27]
    BONIN L. Boron extraction using selective ion exchange resins enables effective magnesium recovery from lithium rich brines with minimal lithium loss[J]. Separation and Purification Technology, 2021, 275:119177.
    [28]
    CHEN Y Z, LYU J F, WANG Y M, et al. Synthesis, characterization, adsorption, and isotopic separation studies of pyrocatechol-modified MCM-41 for efficient boron removal[J]. Industrial&Engineering Chemistry Research,2019, 58(8):3282-3292.
    [29]
    HUSSAIN A, SHARMA R, MATAR J M, et al. Application of emerging ion exchange resin for boron removal from saline groundwater[J]. Journal of Water Process Engineering, 2019, 32:100906.
    [30]
    邹晓勇,陈民仁.离子交换法除硫酸锰溶液中钴镍的中试研究[J].广州化工,2019,47(6):52-54.
    [31]
    KAYACI S, ERSOLMAZ S B, AHUNBAY M G, et al. Technical and economic feasibility of the concurrent desalination and boron removal (CDBR) process[J]. Desalination,2020,486:114474.
    [32]
    李为兵,陈卫,袁哲,等.磁性离子交换树脂处理南方湖泊水的中试研究[J].中国给水排水,2011,27(1):5-7.
  • Relative Articles

    [1]LU Jinsuo, MA Xinting, JIANG Hao, YU Mengzhu, SONG Guang, CHEN Xingdu. REMOVAL PERFORMANCE AND DEGRADATION MECHANISM OF PARTICULATE MATTER AND H2S GAS BY SOLUTION ABSORPTION-ELECTRO-FENTON PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 155-165. doi: 10.13205/j.hjgc.202412019
    [2]YAO Xinhua, LU Guanghua. EFFECTS OF SLUDGE BLENDING SINTERING ON MINERALIZATION, EMISSION OF FLUE GAS PARTICLES AND DIOXINS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 190-196,157. doi: 10.13205/j.hjgc.202312023
    [3]LI Dou, WANG Yan, LIU Ruhai, SUN Haolin, YIN Pingping, ZHOU Xuyuan, MO Bing, LI Dongting. TEMPORAL VARIATION, SOURCE ANALYSIS AND ENVIRONMENTAL EFFECTS OF WATER-SOLUBLE IONS IN TSP IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 109-116,126. doi: 10.13205/j.hjgc.202308014
    [4]DENG Jianguo, WANG Dongbin, LIU Tonghao, LI Xue, YANG Shuwen, DUAN Lei, JIANG Jingkun. ORGANIC COMPONENTS IN CONDENSABLE PARTICLE MATTER EMITTED FROM COAL-FIRED POWER PLANTS AND STEEL PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 13-17,31. doi: 10.13205/j.hjgc.202203003
    [5]DU Bo-ying, MA Yun-feng, WANG Qi, WANG Yue, SHI Xiao-fei, WANG Shuai, BIAN Yu-shan. ANALYSIS OF DIFFUSION CHARACTERISTICS AND FORMATION CAUSES OF PM2.5 IN SHENYANG USING WRF-CHEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 89-97,104. doi: 10.13205/j.hjgc.202102014
    [6]ZHU Hong-tang, SHEN Xian-kun, LI Run-hao, HU Xiu-de, SUN De-shuai, CHEN Zhao-jun. REMOVAL OF FINE PARTICLES FROM COAL COMBUSTION WITH CHEMICAL AGGLOMERATION AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 97-102,91. doi: 10.13205/j.hjgc.202012017
  • Cited by

    Periodical cited type(5)

    1. 蒋军成,胡政. 燃煤电站中锅炉燃烧烟气余热节能分析. 能源与环保. 2023(02): 173-179 .
    2. 李新强,赖志强,艾华,刘健,刘维鸽. 炼钢厂热泼渣废气白雾治理及水分回收系统. 重型机械. 2022(03): 32-35 .
    3. 吴剑恒. “双碳”目标下燃煤背压机组锅炉烟气余热深度利用研究. 电力学报. 2022(05): 384-421 .
    4. 梅欢. 直接换热烟气提水技术及其工程应用. 电力科技与环保. 2021(02): 16-21 .
    5. 刘舒巍,李红飞,舒斌,靳超然. 氟塑料的改性及其在换热器领域的应用研究进展. 化工管理. 2019(13): 103-104 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 82.8 %META: 82.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.7 %其他: 20.7 %其他: 1.1 %其他: 1.1 %东莞: 1.1 %东莞: 1.1 %北京: 3.4 %北京: 3.4 %台州: 5.7 %台州: 5.7 %呼和浩特: 2.3 %呼和浩特: 2.3 %扬州: 1.1 %扬州: 1.1 %杭州: 5.7 %杭州: 5.7 %湖州: 1.1 %湖州: 1.1 %漯河: 2.3 %漯河: 2.3 %漳州: 1.1 %漳州: 1.1 %芒廷维尤: 31.0 %芒廷维尤: 31.0 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 1.1 %苏州: 1.1 %衢州: 1.1 %衢州: 1.1 %西宁: 16.1 %西宁: 16.1 %邯郸: 1.1 %邯郸: 1.1 %重庆: 1.1 %重庆: 1.1 %长春: 1.1 %长春: 1.1 %其他其他东莞北京台州呼和浩特扬州杭州湖州漯河漳州芒廷维尤芝加哥苏州衢州西宁邯郸重庆长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (180) PDF downloads(5) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return