Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Yan, GUO Jia-lin, SHI Yang, WU Zhi-qi, JIANG Bin-hui. A GROUNDWATER INFLOW PREDICTION METHOD FOR FUSHUN WEST OPEN-PIT MINE BASED ON GMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 75-79,129. doi: 10.13205/j.hjgc.202101011
Citation: JIE Ya-wei, XU Ran-yun, DING Wei, JIANG Yi-heng, ZHANG Ben, LIU Hong-yuan. AOX FORMATION DURING THE ADVANCED OXIDATION OF PHENOL WASTEWATER CONTAINING CHLORIDE ION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 1-8. doi: 10.13205/j.hjgc.202205001

AOX FORMATION DURING THE ADVANCED OXIDATION OF PHENOL WASTEWATER CONTAINING CHLORIDE ION

doi: 10.13205/j.hjgc.202205001
  • Received Date: 2021-06-25
    Available Online: 2022-07-02
  • The high concentration of chloride ions prevalent in refractory industrial wastewater affects the performance of advanced oxidation and generates harmful organochlorine by-products. In this study, phenol was selected as the target pollutant and the generation of adsorbable organic halogens(AOX) during its oxidation by two typical advanced oxidation processes, namely UV/PDS and UV/H2O2, were investigated in the presence of Cl-. The results showed that UV/PDS was more effective than UV/H2O2 in the degradation and mineralization of phenol under experimental conditions in the presence of 1000 mg/L and 10000 mg/L Cl-. However, the AOX concentration formed during UV/PDS oxidation was about 10 times higher than that in UV/H2O2. The UV/H2O2 process tended to form more AOX under strongly acidic conditions(pH=3), while the AOX generation in the UV/PDS process was not significantly affected by the initial pH. Simulations of the steady-state concentrations of the four chlorine radicals revealed that the chlorine radical concentration increased for 1~2 orders of magnitude, when Cl- increased from 1000 mg/L to 10000 mg/L. The concentration in the UV/PDS system was significantly higher than that in UV/H2O2, which may be an important reason for the significant difference in AOX observed in the two advanced oxidation processes under different conditions. Similarly, the UV/PDS generated more AOX when treating actual wastewater, and the effect of organic structure and composition in wastewater on AOX generation was stronger than the effect of TOC concentration in wastewater.
  • [1]
    MA D S,YI H,LAI C,et al.Critical review of advanced oxidation processes in organic wastewater treatment[J].Chemosphere,2021,275:130104.
    [2]
    GIANNAKIS S,LIN K Y A,GHANBARI F.A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs)[J].Chemical Engineering Journal,2021,406:127083.
    [3]
    TU X,MENG X Y,PAN Y,et al.Degradation kinetics of target compounds and correlations with spectral indices during UV/H2O2 post-treatment of biologically treated acrylonitrile wastewater[J].Chemosphere,2020,243:125384.
    [4]
    OYEKUNLE D T,CAI J,GENDY E A,et al.Impact of chloride ions on activated persulfates based advanced oxidation process (AOPs):a mini review[J].Chemosphere,2021,280:130949.
    [5]
    XIE Y W,XU R Y,LIU R,et al.Adsorbable organic halogens formed during treatment of Cl--containing wastewater by sulfate and hydroxyl radical-based advanced oxidation processes[J].Chemical Engineering Journal,2020,389:124457.
    [6]
    HU L M,ZHANG G S,LIU M,et al.Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation:effects of pH,inorganic anions,and water matrix[J].Chemical Engineering Journal,2018,338:300-310.
    [7]
    WANG Y B,CAO D,ZHAO X.Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped ordered mesoporous carbon[J].Chemical Engineering Journal,2017,328:1112-1121.
    [8]
    ANIPSITAKIS G P,DIONYSIOU D D,GONZALEZ M A.Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds:implications of chloride ions[J].Environmental Science& Technology,2006,40(3):1000-1007.
    [9]
    YUAN R,RAMJAUN S N,WANG Z,et al.Photocatalytic degradation and chlorination of azo dye in saline wastewater:Kinetics and AOX formation[J].Chemical Engineering Journal,2012,192:171-178.
    [10]
    FANG C L,XIAO D X,LIU W Q,et al.Enhanced AOX accumulation and aquatic toxicity during 2,4,6-trichlorophenol degradation in a Co (Ⅱ)/peroxymonosulfate/Cl- system[J].Chemosphere,2016,144:2415-2420.
    [11]
    KACZMARCZYK A,NIEMIRYCZ E.Adsorbable organic halogens (AOX) in polish rivers-levels and changes[J].Acta Hydrochimica et Hydrobiologica,2005,33(4):324-336.
    [12]
    XU R Y,XIE Y W,TIAN J P,et al.Adsorbable organic halogens in contaminated water environment:a review of sources and removal technologies[J].Journal of Cleaner Production,2021,283:124645.
    [13]
    YANG W C,LI X M,XI D D,et al.Synergistic chromium (Ⅵ) reduction and phenol oxidative degradation by FeS2/Fe0 and persulfate[J].Chemosphere,2021,281:130957.
    [14]
    任龙飞,徐宇博,邵嘉慧.新型PDMS相转化膜在萃取膜生物反应器中的应用[J].环境工程,2021,39(7):133-138.
    [15]
    XIE Y W,CHEN L J,LIU R,et al.AOX contamination in Hangzhou Bay,China:Levels,distribution and point sources[J].Environmental Pollution,2018,235:462-469.
    [16]
    OLMEZ-HANCI T,ARSLAN-ALATON I.Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J].Chemical Engineering Journal,2013,224:10-16.
    [17]
    ESPLUGAS S,GIMENEZ J,CONTRERAS S,et al.Comparison of different advanced oxidation processes for phenol degradation[J].Water Research,2002,36(4):1034-1042.
    [18]
    GREBEL J E,PIGNATELLO J J,MITCH W A.Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J].Environmental Science& Technology,2010,44(17):6822-6828.
    [19]
    STEFAN M I,HOY A R,BOLTON J R.Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide[J].Environmental Science& Technology,1996,30(7):2382-2390.
    [20]
    LEE Y M,LEE G,ZOH K D.Benzophenone-3 degradation via UV/H2O2 and UV/persulfate reactions[J].Journal of Hazardous Materials,2021,403:123591.
    [21]
    HUANG Y F,HUANG Y H.Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe (Ⅱ,Ⅲ) two-stage oxidation process[J].Journal of Hazardous Materials,2009,162(2/3):1211-1216.
    [22]
    LIU J,LIU Y,TIAN Y,et al.Comparison of the oxidation of halogenated phenols in UV/PDS and UV/H2O2 advanced oxidation processes[J].RSC Advances,2020,10(11):6464-6472.
    [23]
    LUTZE H V,KERLIN N,SCHMIDT T C.Sulfate radical-based water treatment in presence of chloride:formation of chlorate,inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J].Water Research,2015,72:349-360.
    [24]
    YANG Y,PIGNATELLO J J,MA J,et al.Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J].Environmental Science& Technology,2014,48(4):2344-2351.
    [25]
    WANG Z H,YUAN R X,GUO Y G,et al.Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent:kinetic analysis[J].Journal of Hazardous Materials,2011,190(1/2/3):1083-1087.
    [26]
    WANG F G,WANG W J,YUAN S J,et al.Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution[J].Journal of Photochemistry and Photobiology a-Chemistry,2017,348:79-88.
    [27]
    GHALY M Y,HARTEL G,MAYER R,et al.Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process:a comparative study[J].Waste Management,2001,21(1):41-47.
    [28]
    PEIRO A M,AYLLON J A,PERAL J,et al.TIO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds[J].Applied Catalysis B-Environmental,2001,30(3/4):359-373.
    [29]
    FANG J Y,FU Y,SHANG C.The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J].Environmental Science& Technology,2014,48(3):1859-1868.
    [30]
    IANNI J C.Kintecus,Windows version V6.51[Z].2018;Available from:http://kintecus.com/.
    [31]
    BAYCAN N,THOMANETZ E,SENGUL F.Influence of chloride concentration on the formation of AOX in UV oxidative system[J].Journal of Hazardous Materials,2007,143(1/2):171-176.
    [32]
    MINISCI F,CITTERIO A,GIORDANO C.Electron-transfer processes-peroxydisulfate,a useful and versatile reagent in organic-chemistry[J].Accounts of Chemical Research,1983,16(1):27-32.
    [33]
    李卫平,郝梦影,敬双怡,等.SMBBR处理焦化废水性能及菌群结构响应关系[J].中国环境科学,2019,39(8):3332-3339.
    [34]
    LU J H,BENJAMIN M M,KORSHIN G V,et al.Reactions of the flavonoid hesperetin with chlorine:a spectroscopic study of the reaction pathways[J].Environmental Science& Technology,2004,38(17):4603-4611.
  • Relative Articles

    [1]YIN Leyi, HUANG Guoxin, NIU Haobo, CHEN Jian, XIE Yueqing, YANG Lihu, LIU Ling. GROUNDWATER POLLUTION DYNAMIC RISK ASSESSMENT BASED ON NUMERICAL SIMULATION AND RISK SCREENING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 199-205. doi: 10.13205/j.hjgc.202401026
    [2]YAN Cailian, LIN Xiuli, HU Longji, LIU Jingxian. NUMERICAL SIMULATION ANALYSIS OF FILTRATION VELOCITY DISTRIBUTION OF CYLINDRICAL AND PLEATED FILTER BAGS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 225-232. doi: 10.13205/j.hjgc.202403028
    [3]LIN Huili, JIN Zhaodi, ZHANG Shuli, ZHANG Guangxue, YU Qun, ZHANG Min. NUMERICAL SIMULATION AND EVALUATION OF INDIRECT THERMAL DESORPTION EQUIPMENT FOR PETROLEUM HYDROCARBON CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 261-267. doi: 10.13205/j.hjgc.202403032
    [4]YIN Yalun, HOU Jingming, LI Xinyi, LUAN Guangxue, GAO Xujun, WANG Tian, SHEN Jian, QIAO Mengxi. APPLICATION OF GAST-SWMM COUPLED NUMERICAL MODEL IN LARGE-SCALE URBAN INUNDATION RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 82-90. doi: 10.13205/j.hjgc.202404010
    [5]LI Jian, WU Chunmao, QI Zhanfeng. NUMERICAL SIMULATION OF AIRFLOW DISTRIBUTION AND STRUCTURAL OPTIMIZATION IN AN ELECTROSTATIC OIL MIST PURIFIER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 202-208. doi: 10.13205/j.hjgc.202308026
    [6]DU Chuan, LI Houen, CHEN Suyun. APPLICATION OF NUMERICAL SIMULATION TECHNOLOGY IN EXTRACTION AND TREATMENT OF POLLUTED GROUNDWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 102-108. doi: 10.13205/j.hjgc.202307014
    [7]ZHANG You, ZHAO Tingting, DU Ranli, LI Huashan, KONG Xiangcheng, XUE Jianliang. NUMERICAL SIMULATION ANALYSIS OF FLOW CHARACTERISTICS OF DESCENDING FILM EVAPORATION OF SALT-CONTAINING WASTEWATER IN COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 17-22,31. doi: 10.13205/j.hjgc.202306003
    [8]LI Debo, CHEN Zhaoli, CHEN Zhihao, FENG Yongxin, HUANG Zigan, WEI Chen, MA Xiaoqian. NUMERICAL SIMULATION OF MIXED FIRING OF AGED REFUSE AND AIR DISTRIBUTION OPTIMIZATION IN A MSW INCINERATION FURNACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 113-119. doi: 10.13205/j.hjgc.202211016
    [9]LIU Pengyu, LI Debo, LIU Yanfeng, QUE Zhengbin, MIAO Jianjie, CHEN Zhaoli. RESEARCH PROGRESS ON NUMERICAL SIMULATION OF SCR DENITRIFICATION SYSTEM IN A COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 224-232. doi: 10.13205/j.hjgc.202210029
    [10]ZHENG Kaixuan, HUANG Junlong, LUO Xingshen, WANG Hongtao, CHEN Tan. APPLICATION PROGRESS OF NUMERICAL SIMULATION IN PERMEABLE REATIVE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 22-30. doi: 10.13205/j.hjgc.202206003
    [11]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [12]LI Wenjun, ZHENG Chenghang, WANG Yifan, ZHAO Zhongyang, LIU Chang, WU Weihong, LIU Shaojun. NUMERICAL SIMULATION ON SPRAY EVAPORATION PROCESS FOR SMALL-SCALE QUENCH TOWER IN LIMITED SPACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 50-56,78. doi: 10.13205/j.hjgc.202204008
    [13]NIE Peng-fei, GAO Zhi, MENG De-run, ZHANG Hong-bo, ZHANG Qing. APPLICATION OF CFD IN A DOUBLE STAGE DESULFURIZATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 119-124,130. doi: 10.13205/j.hjgc.202108016
    [14]HAN Xiao-dong, SUN Ye. SITE SELECTION OF WASTE TRANSFER STATION BASED ON NUMERICAL SIMULATIONS OF ODOR DISPERSION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 130-135. doi: 10.13205/j.hjgc.202103018
    [15]ZHAO Kun, LI Ruo-hua, CHENG Wen-long, YANG Yuan-ping, YUE Shu-bo. NUMERICAL SIMULATION STUDY ON ENVIRONMENTAL IMPACT OF SEWAGE DISCHARGE ON ESTUARY WATER FUNCTIONAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 33-40. doi: 10.13205/j.hjgc.202010006
    [16]ZHOU Chuan, WU Qi-rong, YU Jiang-tao, QIN Fu-chu. NUMERICAL SIMULATION FOR FGD WASTEWATER EVAPORATION IN THE FLUE DUCT OF A 2×350 MW COAL-FIRED UNIT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 96-101. doi: 10.13205/j.hjgc.202005017
    [17]QU Guang-fei, AN Zhi, NING Ping, XIE Ruo-song. GENERAL SURVEY ON APPLICATION OF NUMERICAL SIMULATION IN SEWAGE BIOLOGICAL TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 99-104,179. doi: 10.13205/j.hjgc.202003017
    [18]SHEN Li. PREDICTION OF DUST MOVEMENT LAW IN COAL-FIRED POWER PLANTS BASED ON GAS-PARTICLE TWO-PHASE FLOW MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 181-187,93. doi: 10.13205/j.hjgc.202006030
    [19]Ding Zhijiang Lu Mingyuan Xiao Lichun, . NUMERICAL SIMULATION METHOD OF GAS FLOW DISTRIBUTION IN ELECTROSTATIC PRECIPITATOR FOR CONVERTER GAS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 92-96. doi: 10.13205/j.hjgc.201504019
    [20]Mao Rui, Liu Genfan, Deng Xiang, Fan Ning. NUMERICAL SIMULATION STUDY ON STRUCTURAL DEVELOPMENT OF BAG FILTER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 77-81. doi: 10.13205/j.hjgc.201503016
  • Cited by

    Periodical cited type(7)

    1. 陆睿,尹尚先,王玉国,孟浩鹏,王旭. 基于GMS的深部煤层开采工作面涌水量预测. 煤矿安全. 2025(01): 164-170 .
    2. 曲为贵,从辉,牛真茹,李智,赵鹏,赵丽. 基坑疏干抽排对区域水文地质的影响分析. 地下水. 2023(02): 66-69 .
    3. 张培森,李复兴,付翔,田志兆,牛辉,许大强. 祁东煤矿构造控水特征和地下水运移规律. 煤炭科学技术. 2023(02): 292-305 .
    4. 杜成鸿,向琪云,刘国东. 基于GMS的地下水油气井污染运移研究. 环境工程. 2023(S1): 561-565 . 本站查看
    5. 赵雷,侯克鹏,者亚雷,何全松,何平. 露天大水矿床开采渗流场及帷幕防治水模拟研究. 现代矿业. 2023(07): 63-67 .
    6. 王帅,何少林,苑宏英,纪冬丽,齐志斌. 基于GMS应用的开采区地下水模拟的研究进展. 地下水. 2022(01): 14-17 .
    7. 吴季寰,张春山,孟华君,郭涵,吴坤罡,李洪嘉. 抚顺西露天矿区滑坡易发性评价与时空特征分析. 地质力学学报. 2021(03): 409-417 .

    Other cited types(14)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.0 %FULLTEXT: 13.0 %META: 84.9 %META: 84.9 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.4 %其他: 8.4 %China: 0.8 %China: 0.8 %Kennedy Town: 0.3 %Kennedy Town: 0.3 %[]: 0.5 %[]: 0.5 %东莞: 1.9 %东莞: 1.9 %临汾: 0.3 %临汾: 0.3 %保定: 0.3 %保定: 0.3 %内江: 0.3 %内江: 0.3 %北京: 5.4 %北京: 5.4 %南京: 0.8 %南京: 0.8 %南宁: 1.4 %南宁: 1.4 %南昌: 0.5 %南昌: 0.5 %南通: 1.1 %南通: 1.1 %台州: 0.8 %台州: 0.8 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.3 %呼和浩特: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.3 %天津: 0.3 %娄底: 0.3 %娄底: 0.3 %安顺: 0.5 %安顺: 0.5 %宣城: 0.8 %宣城: 0.8 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.3 %广州: 0.3 %廊坊: 0.5 %廊坊: 0.5 %张家口: 0.5 %张家口: 0.5 %徐州: 1.1 %徐州: 1.1 %扬州: 2.2 %扬州: 2.2 %昆明: 0.3 %昆明: 0.3 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.3 %杭州: 0.3 %榆林: 0.3 %榆林: 0.3 %武汉: 1.9 %武汉: 1.9 %江门: 0.3 %江门: 0.3 %沈阳: 0.5 %沈阳: 0.5 %济南: 0.8 %济南: 0.8 %济源: 0.5 %济源: 0.5 %温州: 0.3 %温州: 0.3 %湖州: 0.5 %湖州: 0.5 %漯河: 5.7 %漯河: 5.7 %焦作: 1.1 %焦作: 1.1 %美国: 0.3 %美国: 0.3 %芒廷维尤: 30.8 %芒廷维尤: 30.8 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.3 %苏州: 0.3 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.5 %襄阳: 0.5 %西宁: 6.5 %西宁: 6.5 %西安: 0.8 %西安: 0.8 %贵阳: 0.3 %贵阳: 0.3 %运城: 2.7 %运城: 2.7 %连云港: 0.3 %连云港: 0.3 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.8 %郑州: 0.8 %郴州: 0.3 %郴州: 0.3 %鄂州: 5.4 %鄂州: 5.4 %重庆: 0.5 %重庆: 0.5 %金华: 0.3 %金华: 0.3 %长沙: 1.4 %长沙: 1.4 %长治: 0.3 %长治: 0.3 %阜新: 0.3 %阜新: 0.3 %青岛: 0.5 %青岛: 0.5 %香港特别行政区: 0.5 %香港特别行政区: 0.5 %马湾: 0.8 %马湾: 0.8 %黄冈: 0.8 %黄冈: 0.8 %黔南: 0.3 %黔南: 0.3 %其他ChinaKennedy Town[]东莞临汾保定内江北京南京南宁南昌南通台州合肥呼和浩特嘉兴天津娄底安顺宣城常州常德广州廊坊张家口徐州扬州昆明晋城朝阳杭州榆林武汉江门沈阳济南济源温州湖州漯河焦作美国芒廷维尤芝加哥苏州衢州襄阳西宁西安贵阳运城连云港遵义邯郸郑州郴州鄂州重庆金华长沙长治阜新青岛香港特别行政区马湾黄冈黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (661) PDF downloads(33) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return