Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHANG Xiao-nan, LI Zai-xing, LI Yi-fei, ZHENG Zi-xuan. SSTUDY ON CATALYTIC PYROLYSIS CHARACTERISTICS OF ANTIBIOTIC RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 18-24,30. doi: 10.13205/j.hjgc.202205003
Citation: CHANG Xiao-nan, LI Zai-xing, LI Yi-fei, ZHENG Zi-xuan. SSTUDY ON CATALYTIC PYROLYSIS CHARACTERISTICS OF ANTIBIOTIC RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 18-24,30. doi: 10.13205/j.hjgc.202205003

SSTUDY ON CATALYTIC PYROLYSIS CHARACTERISTICS OF ANTIBIOTIC RESIDUE

doi: 10.13205/j.hjgc.202205003
  • Received Date: 2020-08-10
    Available Online: 2022-07-02
  • In order to convert biomass into high-quality liquid fuel, penicillin residue was selected as catalytic pyrolysis material and pyrolysis experiments were carried out at temperatures of 400℃, 500℃, 600℃ and 700℃. To maximize the yield of biomass oil, the optimal pyrolysis temperature was explored. On this basis, CoO/HZSM-5 and NiO/HZSM-5 were selected as catalysts for catalytic pyrolysis of penicillin residue to explore their catalytic effect on the quality improvement of bio-oil. The results showed that the yield of biomass oil obtained by pyrolysis of penicillin residue at 500℃ reached the peak without catalyst. At the same temperature, the yield of biomass oil decreased when catalyst CoO/HZSM-5 and NiO/HZSM-5 were added, but the content of hydrocarbons in the bio-oil increased by 8.66 and 7.41 percentage points, reaching 25.34% and 24.09%, respectively; the contents of oxygen-containing substances including alcohols, esters, and aldehydes decreased by 9.68 and 12.49 percentage points, respectively, to 31.74% and 30.34%; the contents of nitrogen-containing heterocyclic substances decreased by 5.96 and 12.49 percentage points, respectively, to 32.51% and 35.07%. The catalytic pyrolysis of three amino acids and the intermediate product DKP was studied to further explain the catalytic pyrolysis mechanism of penicillin residue.For the purpose of maximizing the rate, the optimal pyrolysis temperature was also explored.
  • [1]
    王丽君.抗生素菌渣利用处置技术现状及对策建议[J].绿色科技,2017(18):152-154.
    [2]
    王金双,赵继红,刘永德.我国抗生素菌渣资源化研究新进展[J].现代食品,2018(10):29-31.
    [3]
    邹书娟,王一迪,张均雅,等.抗生素菌渣理化性质分析[J].环境科学与技术,2018,41(增刊1):47-52.
    [4]
    LI Y H,LIU D L,XIE Y M.Comprehensive utilization of antibiotic bacterial residue[J].Shandong Association of Animal Science and Veterinary Medicine,2000,6:28-31.
    [5]
    CZERNIK S.Bridgewater AV[J].Energy& Fuels,2004,18(2):590-598.
    [6]
    张旭东,李洪亮,常春.稻壳快速热解制取生物油的试验研究[J].化工新型材料,2015,43(5):112-114.
    [7]
    朱锡锋,李明.生物质快速热解液化技术研究进展[J].石油化工,2013,42(8):833-837.
    [8]
    赵锦波,苟鑫,陈皓,等.多级孔分子筛在生物质催化热裂解制备芳烃中的研究进展[J].生物加工过程,2019,17(4):329-341.
    [9]
    刘超,王海,等.木质纤维素生物质的催化快速热解[J].化学学报,2014,43(22):7594-7623.
    [10]
    郑楠,史纪龙,王杰.生物质铁盐催化加氢热解产生生物油与气态烃的研究[J].燃料化学学报,2020,48(4):414-423.
    [11]
    PETERSON A A,VOGEL F,LACHANCE R P,et al.Thermochemical biofuel production in hydrothermal media:a review of sub-and supercritical water technologies[J].Energy& Environmental Science,2008,1(1):32-65.
    [12]
    张秀梅,陈冠益,孟祥梅,等.催化热解生物质制取富氢气体的研究[J].燃料化学学报,2004,32(4):446-449.
    [13]
    PETERSON A A,VOGEL F,LACHANCE R P,et al.Thermochemical biofuel production in hydrothermal media:a review of sub-and supercritical water technologies[J].Energy& Environmental Science,2008,1(1):32-65.
    [14]
    THANGALAZHY-GOPAKUMAR S,ADHIKARI S,GUPTA R B,et al.Catalytic pyrolysis of helium and hydrogen to producehydrocarbon fuels from biomass[J].Biological Resources Technology,2011,102:6742-6749.
    [15]
    CHANDLER D S,RESENED F L P.Comparison of catalytic rapid pyrolysis and catalytic rapid hydrogenation pyrolysis of liquid fuel produced in fluidized bed reactor[J].Energy Fuel,2019,33:3199-3209.
    [16]
    郑娜,王军.两种铁掺杂木炭在松木加氢热解蒸气催化加氢裂化成甲烷或提质生物油中的性能差异[J].能源燃料,2020(34):546-556.
    [17]
    吕双亮,谭雪松,庄新银,等.木质素及其模化物催化加氮脱氧研究进展[J].现代化工,2012,32(5):35-40.
    [18]
    ZHAO Y,FU Y,GUO Q X.Production of aromatic hydrocarbons through catalytic pyrolysis of-valerolactone from biomass[J].Bioresource Technology,2012,114:740-744.
    [19]
    AGRAFIOTI E,BOURAS G,KALDERIS D,et al.Biochar production by sewage sludge pyrolysis[J].Journal of Analytical and Applied Pyrolysis,2013,101:72-78.
    [20]
    WANG K G,JOHNSTON P A,BROWN R C.Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system[J].Bioresource Technology,2014,173:124-131.
    [21]
    ZHANG J,TIAN Y,CUI Y N,et al.Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:a protein model compound study[J].Bioresource Technology,2013,132:57-63.
    [22]
    REED G P,PATERSON N P,ZHUO Y,et al.Trace element distribution in sewage sludge gasification:source and temperature effects[J].Energy& Fuels,2005,19(1):298-304.
    [23]
    陈昆,郭斌,贡丽鹏,等.土霉素菌渣热解液的理化特性及成分分析[J].河北科技大学学报,2013,34(6):565-571.
    [24]
    李艳美,柏雪源,易维明,等.小麦秸秆热解生物油主要成分分析与残炭表征[J].山东理工大学学报(自然科学版),2016,30(1):1-4.
    [25]
    方书起,石崇,李攀,等.Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J].化工学报,2020,71(4):1637-1645.
    [26]
    张政,程红,陈红,等.十六烷基三甲基溴化铵修饰的HZSM-5催化稻草催化快速热解芳烃得率的提高[J].生物资源技术,2018(256):241-246.
    [27]
    RABIU S,AUTA M,KOVO A.An upgraded bio-oil produced from sugarcane bagasse via the use of HZSM-5 Zeolite catalyst[J].Egyptian Journal of Petroleum,2018,27(4):589-594.
    [28]
    ZHANG H Y,XIAO R,HUANG H.Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor[J].Bioresource Technology,2009,100(3):1428-1434.
    [29]
    孙来芝,陈雷,赵保峰,等.Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J].化工学报,2019,70(8):3160-3166.
    [30]
    MULLEN C A,BOATENG A A.Catalytic pyrolysis GC/MS of lignin from several sources[J].Fuel Processing Technology,2010,91(11):1446-1458.
    [31]
    王霏,郑云武,黄元波,等.ZSM-5催化生物质三组分和松木热解生物油组分分析[J].农业工程学报,2016,32(增刊2):331-337.
    [32]
    杨明顺,康善娇,刘卫兵,等.HZSM-5上辣椒茎秆的催化快速热解[J].可再生能源,2015(79):20-27.
    [33]
    CHEN H P,SI Y H,CHEN Y Q,et al.NOx precursors from biomass pyrolysis:distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J].Fuel,2017,187:367-375.
    [34]
    LI J,LIU Y W,SHI J Y,et al.The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG FTIR[J].Thermochimica Acta,2008,467(1/2):20-29.
    [35]
    HAO J F,GUO J Z,DING L,et al.TG-FTIR,Py-two-dimensional GC-MS with heart-cutting and LC-MS/MS to reveal hydrocyanic acidformation mechanisms during glycine pyrolysis[J].Journal of Thermal Analysis and Calorimetry,2014,115(1):667-673.
    [36]
    LI J,WANG Z Y,YANG X,et al.Evaluate the pyrolysis pathway of glycine and glycylglycine by TG FTIR[J].Journal of Analytical and Applied Pyrolysis,2007,80(1):247-253.
    [37]
    SHARMA R K,CHAN W G,HAJALIGOL M R.Product compositions from pyrolysis of some aliphatic) a-amino acids[J].Journal of Analytical and Applied Pyrolysis,2006,75(2):69-81.
    [38]
    ORSINI S,PARLANTI F,BONADUCE I.Analytical pyrolysis of proteins in samples from artistic and archaeological objects[J].Journal of Analytical and Applied Pyrolysis,2017,124:643-657.
    [39]
    CHEN Y H,LIU S E,CHEN C C.Two-step mass spectrometric approach for the Identification of diketopiperazines in chicken essence[J].European Food Research and Technology,2004,218(6):589-597.
    [40]
    HANSSON K M,AMAND L E,HABERMANN A,et al.Pyrolysis of poly-l-leucine under combustion-like conditions[J].Fuel,2003,82(6):653-660.
    [41]
    SHARMA R K,CHAN W G,WANG J,et al.On the role of peptides in the pyrolysis of amino acids[J].Journal of Analytical and Applied Pyrolysis,2004,72(1):153-163.
    [42]
    YUAN S,ZHOU Z J,LI J,et al.HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J].Energy& Fuels,2010,24(11):6166-6171.
  • Relative Articles

    [1]LE Jihang, WANG Wenlong, WU Qianyuan, CHEN Zhuo, WU Yinhu, JIA Haifeng, LIU Fanghua, WANG Fang, HU Hongying. Quality and risk characteristics of effluent from wastewater treatment plants in central area of Luzhou[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 135-143. doi: 10.13205/j.hjgc.202501015
    [2]ZHANG Li, HE Shanshan, ZHEN Xianghua, XIE Pengchao, WAN Nianhong, LIU Haiyan. ORGANIC EMERGING CONTAMINANTS REMOVAL PROCESS IN WASTEWATER TREATMENT PLANTS AND PROSPECT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 15-24. doi: 10.13205/j.hjgc.202407002
    [3]XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
    [4]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [5]LI Feifei, SU Zhiguo, CAO Feng, MU Qinglin, HUANG Bei, CHEN Lüjun, WEN Donghui. CONTRIBUTION OF WASTEWATER DISCHARGE FROM SEWAGE TREATMENT PLANTS TO ANTIBIOTIC POLLUTION IN COASTAL WATER: A CASE STUDY OF HANGZHOU BAY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 1-8. doi: 10.13205/j.hjgc.202404001
    [6]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [7]WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026
    [8]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [9]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [10]LIU Sixuan, LI Yiping, ZHU Ya, WEI Yao, LI Ronghui, WANG Can, CHEN Yu, PENG Yanli, LIANG Dan. INFLUENCE OF WATER LEVEL DESCENDING OF LAYERED RESERVOIRS ON WATER QUALITY CHARACTERISTICS IN SOUTH CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 179-186,194. doi: 10.13205/j.hjgc.202305024
    [11]ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009
    [12]YU Huaixing, YUAN Ding, HE Zihao. APPLICATION OF SHORT-RANGE PRECISION AERATION AND INTELLIGENT CONTROL SYSTEM IN SEWAGE TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 165-171. doi: 10.13205/j.hjgc.202311026
    [13]MENG Xiaojun, HAN Yong, HUANG Zhigui, GONG Xiaosong. CHALLENGES AND SOLUTIONS OF ANAMMOX IN MAINSTREAM WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 203-214. doi: 10.13205/j.hjgc.202210027
    [14]LI Wen-gang, SUN Yao-sheng, YAO Qiang, CHEN Fang, LIU Jing-yi. REVIEW ON POLLUTION STATUS AND ADVANCED TREATMENT TECHNOLOGIES OF EMERGING ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 77-87. doi: 10.13205/j.hjgc.202108010
    [15]HE Yuan-pu, FAN Hai-tao, LIU Guo-hua, QI Lu, XU Xiang-long, SHAO Yu-ting, WANG Hong-chen. STATUS AND TREND OF AERATION CONTROL STRATEGY DURING BIOLOGICAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 34-41,121. doi: 10.13205/j.hjgc.202106006
    [16]YU Yong, YU Sheng-hua, CHEN Da-gang. PRACTICE AND REFLECTION ON CLEAN EMISSION TECHNOLOGY TRANSFORMATION OF URBAN SEWAGE TREATMENT PLANTS IN ZHEJIANG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 19-24. doi: 10.13205/j.hjgc.202007003
    [17]SHEN Jie, JIN Wei. REVIEW ON EFFECT OF URBAN WASTEWATER TREATMENT PLANT EFFLUENT ON RECEIVING WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 92-98,115. doi: 10.13205/j.hjgc.202003016
    [18]SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005
    [20]INFLUENCES OF DO AND AERATION TIME ON DENITRIFICATION PERFORMANCE OF AEROBIC DENITRIFYING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 62-64. doi: 10.13205/j.hjgc.201412010
  • Cited by

    Periodical cited type(9)

    1. 窦娜莎,孙治国,付友先,刘克琼,盛祥涛,杜欣然,牛亚婷,卞荣星,赵旭. 北方某渗滤液生化处理系统水质变化特征及节能降耗对策研究. 山东化工. 2025(02): 267-271 .
    2. 肖梅. 基于神经网络的污水处理鼓风机曝气控制方法. 自动化与仪器仪表. 2025(02): 116-120 .
    3. 于金旗,孙磊,刘然彬,薛松,杨童,张鹤清. 污水处理厂减污降碳技术探讨. 水处理技术. 2024(04): 18-25 .
    4. 王兴斌. 城镇污水处理厂碳减排技术研究和应用. 绿色矿冶. 2024(03): 88-93+98 .
    5. 丁万杰,刘钊,王孝红. 石化废水处理溶解氧浓度优化控制研究进展. 现代化工. 2024(S1): 16-20 .
    6. 龚洁,郝森舰,芦川,冯立辉,邹曦,朱利明. 苦草-附着生物复合系统对水体磺胺降解的贡献评估. 水生态学杂志. 2023(05): 142-148 .
    7. 朱文秀. 污水处理中技术创新与节能降耗研究. 科技创新与应用. 2022(27): 174-177 .
    8. 高新磊,邱颉,黄睿,房睿. 精准曝气技术在污水处理中的研究进展. 资源节约与环保. 2022(10): 93-96 .
    9. 楚金喜,付根深,王小玲,高静,赵晓娟. 基于改良UCT工艺的精确曝气技术的应用. 净水技术. 2022(11): 70-75 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.9 %FULLTEXT: 10.9 %META: 83.3 %META: 83.3 %PDF: 5.8 %PDF: 5.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.3 %China: 0.3 %[]: 0.1 %[]: 0.1 %上海: 3.5 %上海: 3.5 %东莞: 1.3 %东莞: 1.3 %临汾: 0.1 %临汾: 0.1 %丽水: 0.4 %丽水: 0.4 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 5.9 %北京: 5.9 %十堰: 1.0 %十堰: 1.0 %南京: 2.9 %南京: 2.9 %南宁: 1.5 %南宁: 1.5 %南通: 0.4 %南通: 0.4 %厦门: 0.4 %厦门: 0.4 %台州: 0.1 %台州: 0.1 %合肥: 1.4 %合肥: 1.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 2.8 %天津: 2.8 %安庆: 0.1 %安庆: 0.1 %宜宾: 0.1 %宜宾: 0.1 %宣城: 1.3 %宣城: 1.3 %崇左: 0.1 %崇左: 0.1 %常州: 0.9 %常州: 0.9 %常德: 0.1 %常德: 0.1 %广州: 1.1 %广州: 1.1 %弗吉: 0.4 %弗吉: 0.4 %张家口: 1.4 %张家口: 1.4 %徐州: 0.1 %徐州: 0.1 %成都: 1.3 %成都: 1.3 %扬州: 1.8 %扬州: 1.8 %无锡: 0.5 %无锡: 0.5 %昆明: 0.4 %昆明: 0.4 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 4.3 %杭州: 4.3 %株洲: 0.5 %株洲: 0.5 %桂林: 0.1 %桂林: 0.1 %武汉: 1.3 %武汉: 1.3 %汕头: 0.1 %汕头: 0.1 %江门: 0.8 %江门: 0.8 %池州: 0.1 %池州: 0.1 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.6 %济南: 0.6 %济宁: 0.4 %济宁: 0.4 %济源: 0.1 %济源: 0.1 %深圳: 1.1 %深圳: 1.1 %温州: 0.8 %温州: 0.8 %湖州: 0.4 %湖州: 0.4 %漯河: 6.6 %漯河: 6.6 %潍坊: 0.4 %潍坊: 0.4 %百色: 0.1 %百色: 0.1 %盐城: 1.1 %盐城: 1.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.6 %福州: 0.6 %绍兴: 0.1 %绍兴: 0.1 %肇庆: 0.3 %肇庆: 0.3 %芒廷维尤: 17.7 %芒廷维尤: 17.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.0 %苏州: 1.0 %莆田: 0.1 %莆田: 0.1 %菏泽: 0.1 %菏泽: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 8.7 %西宁: 8.7 %西安: 0.5 %西安: 0.5 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.5 %郑州: 1.5 %重庆: 0.3 %重庆: 0.3 %镇江: 2.4 %镇江: 2.4 %长沙: 1.5 %长沙: 1.5 %阜阳: 0.1 %阜阳: 0.1 %青岛: 1.9 %青岛: 1.9 %其他其他Central DistrictChina[]上海东莞临汾丽水佛山保定兰州北京十堰南京南宁南通厦门台州合肥哈尔滨嘉兴天津安庆宜宾宣城崇左常州常德广州弗吉张家口徐州成都扬州无锡昆明晋城朝阳杭州株洲桂林武汉汕头江门池州沈阳济南济宁济源深圳温州湖州漯河潍坊百色盐城眉山石家庄福州绍兴肇庆芒廷维尤芝加哥苏州莆田菏泽蚌埠衡阳西宁西安西雅图贵阳运城遵义邯郸郑州重庆镇江长沙阜阳青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (254) PDF downloads(16) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return