Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Qing-qing, YANG Yan, XI Huan, GUO Feng, ZHANG Jian-feng, RUAN Shi-ping. TREATMENT OF HIGH-SALINITY PHOSPHATE-CONTAINING WASTEWATER BY CHEMICAL PRECIPITATION METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 31-36. doi: 10.13205/j.hjgc.202205005
Citation: LI Qing-qing, YANG Yan, XI Huan, GUO Feng, ZHANG Jian-feng, RUAN Shi-ping. TREATMENT OF HIGH-SALINITY PHOSPHATE-CONTAINING WASTEWATER BY CHEMICAL PRECIPITATION METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 31-36. doi: 10.13205/j.hjgc.202205005

TREATMENT OF HIGH-SALINITY PHOSPHATE-CONTAINING WASTEWATER BY CHEMICAL PRECIPITATION METHOD

doi: 10.13205/j.hjgc.202205005
  • Received Date: 2021-04-12
    Available Online: 2022-07-02
  • High-salinity phosphate-containing wastewater has the characteristics of high salt content, complex pollutant composition and is difficult to be treated by the biological method. The supernatant will contain some PO3-4-P after struvite production by adding excessive inducers and diluents such as Na2HPO4 and NH4HCO3 to seawater. A chemical precipitation method was applied for excessive phosphate removal. In our experiment, poly-aluminium chloride(PAC), FeCl3, Ca(OH)2 and polyacrylamide(PAM) were selected as experimental chemical reagents. The effect of reaction time, the additive amount of a single chemical reagent and a combination of chemical reagents on the phosphate removal effect were studied. Finally, two strategies were selected, which could make the phosphate content in the effluent meet the emission standard. Strategy 1:adding Ca(OH)2 with a molar ratio of Ca:P of 4.5 made the PO3-4-P content decrease to 0.2 mg/L. Strategy 2:adding Ca(OH)2 with a molar ratio of Ca:P of 4.0, PAC with a molar ratio of Al:P of 0.5, and PAM with a concentration of 0.5 g/L made PO3-4-P content decrease to 0.4 mg/L. Strategy 1 was easy to operate while strategy 2 was helpful for solid-liquid separation. Both of them can be used for the treatment of high-salinity phosphate-containing wastewater. The results provide a practical idea for the treatment of high-salinity phosphate-containing wastewater in the future.
  • [1]
    李芳,刘柏林.PFS和PAM化学沉淀法处理高磷废水的实验研究[J].广州化工,2020,48(14):85-87.
    [2]
    城镇污水处理厂污染物排放标准:GB 18918-2002[S].北京:国家环境保护总局,2002.
    [3]
    ZAMAN M,KIM M,NAKHLA G,et al.Enhanced biological phosphorus removal using thermal alkaline hydrolyzed municipal wastewater biosolids[J].Journal of Environmental Sciences,2019,86(12):164-174.
    [4]
    MARTINS M C,SANTOS E B H,MARQUES C R.First study on oyster-shell-based phosphorous removal in saltwater:a proxy to effluent bioremediation of marine aquaculture[J].Science of the Total Environment,2017,574(JAN.1):605-615.
    [5]
    SUN H J,MOHAMMED A N,LIU Y.Phosphorus recovery from source-diverted blackwater through struvite precipitation[J].Science of the Total Environment,2020,743(NOV.15):140747.
    [6]
    SHTULL-TRAURING E,COHEN A,BEN-HUR M,et al.Reducing salinity of treated waste water with large scale desalination[J].Water Research,2020,186:116322.
    [7]
    GU K H,HEE A D.Study on the biological denitrification reaction of high-salinity wastewater using an aerobic granular sludge (AGS)[J].Journal of Environmental Science International,2019,28(7):607-615.
    [8]
    ZHANG H,ELSKENS M,CHEN G,et al.Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs[J].Chemosphere,2019,225(JUN.):352-359.
    [9]
    陈阳.石灰-氟化钠复合絮凝剂除磷试验研究[D].杭州:浙江大学,2014.
    [10]
    马韩静,李玲玲,孙子惠,等.复合除磷剂的使用与分次投加方式对除磷效果的影响[J].净水技术,2019,38(3):76-81.
    [11]
    JEON K J,KIM J H,AHN J H.Phosphorus removal characteristics of titanium salts compared with aluminum salt[J].Water Environment Research,2017,89(8):739-743.
    [12]
    MBAMBA C K,LINDBLOM E,FLORES-ALSINA X,et al.Plant-wide model-based analysis of iron dosage strategies for chemical phosphorus removal in wastewater treatment systems[J].Water Research,2019,155:12-25.
    [13]
    JI L,YIN C S,CHEN X Y,et al.Hydrogen peroxide coordination-calcium salt precipitation for deep phosphorus removal from crude sodium tungstate solution[J].Hydrometallurgy,2020,191:105189.
    [14]
    吴志宇,黎建平,王怡璇,等.化学镀镍废液钙盐沉淀法除磷工艺的研究[J].电镀与环保,2019,39(5):72-74.
    [15]
    冉子寒,张宇峰,顾瑞之,等."化学沉淀-超滤"组合工艺处理焦磷酸盐镀铜废水的研究[J].膜科学与技术,2020,40(2):6-13.
    [16]
    唐益洲,孟勇,崔磊,等.电催化氧化-化学沉淀耦合工艺处理化学镀镍废水[J].工业水处理,2017,37(5):58-62.
    [17]
    司马卫平.高盐高氮磷榨菜有机废水与城镇污水协同处理脱氮除磷研究[D].重庆:重庆大学,2013.
    [18]
    HU P,REN J,HU X Y,et al.Comparison of two starch-based flocculants with polyacrylamide for the simultaneous removal of phosphorus and turbidity from simulated and actual wastewater samples in combination with FeCl3[J].International Journal of Biological Macromolecules,2021,167(15):223-232.
    [19]
    靳雅莉,谢雨桐,马洪霞,等.含聚丙烯酰胺废水处理技术的研究进展[J].化工技术与开发,2019,48(10):14.
    [20]
    杨二亮,周元祥,王洪雷,等.PAC-PAM联合处理某工业园电镀废水的处理效果试验[J].绿色科技,2016(16):141-143.
    [21]
    曾德芳,徐保林.沉淀-絮凝结合法处理磷化废水的研究[J].环境工程学报,2009,3(5):795-798.
    [22]
    任婷.高纯石墨生产中含氟废水处理工艺研究[D].哈尔滨:哈尔滨工业大学,2016.
    [23]
    黄淦.联用强化混凝与化学沉淀法去除水中重金属离子的研究[D].长沙:湖南大学,2008.
    [24]
    BACHAND P A M,VAITHIYANATHAN P,RICHARDSON C J.Phosphorous removal improvements and cost reductions leveraging cationic polymers and anionic polyacrylamides in Chemically Enhanced Treatment Wetland (CETW) systems[J].Ecological Engineering,2020,146:105722.
  • Relative Articles

    [1]LE Jihang, WANG Wenlong, WU Qianyuan, CHEN Zhuo, WU Yinhu, JIA Haifeng, LIU Fanghua, WANG Fang, HU Hongying. Quality and risk characteristics of effluent from wastewater treatment plants in central area of Luzhou[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 135-143. doi: 10.13205/j.hjgc.202501015
    [2]ZHANG Li, HE Shanshan, ZHEN Xianghua, XIE Pengchao, WAN Nianhong, LIU Haiyan. ORGANIC EMERGING CONTAMINANTS REMOVAL PROCESS IN WASTEWATER TREATMENT PLANTS AND PROSPECT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 15-24. doi: 10.13205/j.hjgc.202407002
    [3]XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
    [4]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [5]LI Feifei, SU Zhiguo, CAO Feng, MU Qinglin, HUANG Bei, CHEN Lüjun, WEN Donghui. CONTRIBUTION OF WASTEWATER DISCHARGE FROM SEWAGE TREATMENT PLANTS TO ANTIBIOTIC POLLUTION IN COASTAL WATER: A CASE STUDY OF HANGZHOU BAY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 1-8. doi: 10.13205/j.hjgc.202404001
    [6]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [7]WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026
    [8]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [9]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [10]LIU Sixuan, LI Yiping, ZHU Ya, WEI Yao, LI Ronghui, WANG Can, CHEN Yu, PENG Yanli, LIANG Dan. INFLUENCE OF WATER LEVEL DESCENDING OF LAYERED RESERVOIRS ON WATER QUALITY CHARACTERISTICS IN SOUTH CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 179-186,194. doi: 10.13205/j.hjgc.202305024
    [11]ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009
    [12]YU Huaixing, YUAN Ding, HE Zihao. APPLICATION OF SHORT-RANGE PRECISION AERATION AND INTELLIGENT CONTROL SYSTEM IN SEWAGE TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 165-171. doi: 10.13205/j.hjgc.202311026
    [13]MENG Xiaojun, HAN Yong, HUANG Zhigui, GONG Xiaosong. CHALLENGES AND SOLUTIONS OF ANAMMOX IN MAINSTREAM WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 203-214. doi: 10.13205/j.hjgc.202210027
    [14]LI Wen-gang, SUN Yao-sheng, YAO Qiang, CHEN Fang, LIU Jing-yi. REVIEW ON POLLUTION STATUS AND ADVANCED TREATMENT TECHNOLOGIES OF EMERGING ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 77-87. doi: 10.13205/j.hjgc.202108010
    [15]HE Yuan-pu, FAN Hai-tao, LIU Guo-hua, QI Lu, XU Xiang-long, SHAO Yu-ting, WANG Hong-chen. STATUS AND TREND OF AERATION CONTROL STRATEGY DURING BIOLOGICAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 34-41,121. doi: 10.13205/j.hjgc.202106006
    [16]YU Yong, YU Sheng-hua, CHEN Da-gang. PRACTICE AND REFLECTION ON CLEAN EMISSION TECHNOLOGY TRANSFORMATION OF URBAN SEWAGE TREATMENT PLANTS IN ZHEJIANG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 19-24. doi: 10.13205/j.hjgc.202007003
    [17]SHEN Jie, JIN Wei. REVIEW ON EFFECT OF URBAN WASTEWATER TREATMENT PLANT EFFLUENT ON RECEIVING WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 92-98,115. doi: 10.13205/j.hjgc.202003016
    [18]SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005
    [20]INFLUENCES OF DO AND AERATION TIME ON DENITRIFICATION PERFORMANCE OF AEROBIC DENITRIFYING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 62-64. doi: 10.13205/j.hjgc.201412010
  • Cited by

    Periodical cited type(9)

    1. 窦娜莎,孙治国,付友先,刘克琼,盛祥涛,杜欣然,牛亚婷,卞荣星,赵旭. 北方某渗滤液生化处理系统水质变化特征及节能降耗对策研究. 山东化工. 2025(02): 267-271 .
    2. 肖梅. 基于神经网络的污水处理鼓风机曝气控制方法. 自动化与仪器仪表. 2025(02): 116-120 .
    3. 于金旗,孙磊,刘然彬,薛松,杨童,张鹤清. 污水处理厂减污降碳技术探讨. 水处理技术. 2024(04): 18-25 .
    4. 王兴斌. 城镇污水处理厂碳减排技术研究和应用. 绿色矿冶. 2024(03): 88-93+98 .
    5. 丁万杰,刘钊,王孝红. 石化废水处理溶解氧浓度优化控制研究进展. 现代化工. 2024(S1): 16-20 .
    6. 龚洁,郝森舰,芦川,冯立辉,邹曦,朱利明. 苦草-附着生物复合系统对水体磺胺降解的贡献评估. 水生态学杂志. 2023(05): 142-148 .
    7. 朱文秀. 污水处理中技术创新与节能降耗研究. 科技创新与应用. 2022(27): 174-177 .
    8. 高新磊,邱颉,黄睿,房睿. 精准曝气技术在污水处理中的研究进展. 资源节约与环保. 2022(10): 93-96 .
    9. 楚金喜,付根深,王小玲,高静,赵晓娟. 基于改良UCT工艺的精确曝气技术的应用. 净水技术. 2022(11): 70-75 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.9 %FULLTEXT: 10.9 %META: 83.3 %META: 83.3 %PDF: 5.8 %PDF: 5.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.3 %China: 0.3 %[]: 0.1 %[]: 0.1 %上海: 3.5 %上海: 3.5 %东莞: 1.3 %东莞: 1.3 %临汾: 0.1 %临汾: 0.1 %丽水: 0.4 %丽水: 0.4 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 5.9 %北京: 5.9 %十堰: 1.0 %十堰: 1.0 %南京: 2.9 %南京: 2.9 %南宁: 1.5 %南宁: 1.5 %南通: 0.4 %南通: 0.4 %厦门: 0.4 %厦门: 0.4 %台州: 0.1 %台州: 0.1 %合肥: 1.4 %合肥: 1.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 2.8 %天津: 2.8 %安庆: 0.1 %安庆: 0.1 %宜宾: 0.1 %宜宾: 0.1 %宣城: 1.3 %宣城: 1.3 %崇左: 0.1 %崇左: 0.1 %常州: 0.9 %常州: 0.9 %常德: 0.1 %常德: 0.1 %广州: 1.1 %广州: 1.1 %弗吉: 0.4 %弗吉: 0.4 %张家口: 1.4 %张家口: 1.4 %徐州: 0.1 %徐州: 0.1 %成都: 1.3 %成都: 1.3 %扬州: 1.8 %扬州: 1.8 %无锡: 0.5 %无锡: 0.5 %昆明: 0.4 %昆明: 0.4 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 4.3 %杭州: 4.3 %株洲: 0.5 %株洲: 0.5 %桂林: 0.1 %桂林: 0.1 %武汉: 1.3 %武汉: 1.3 %汕头: 0.1 %汕头: 0.1 %江门: 0.8 %江门: 0.8 %池州: 0.1 %池州: 0.1 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.6 %济南: 0.6 %济宁: 0.4 %济宁: 0.4 %济源: 0.1 %济源: 0.1 %深圳: 1.1 %深圳: 1.1 %温州: 0.8 %温州: 0.8 %湖州: 0.4 %湖州: 0.4 %漯河: 6.6 %漯河: 6.6 %潍坊: 0.4 %潍坊: 0.4 %百色: 0.1 %百色: 0.1 %盐城: 1.1 %盐城: 1.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.6 %福州: 0.6 %绍兴: 0.1 %绍兴: 0.1 %肇庆: 0.3 %肇庆: 0.3 %芒廷维尤: 17.7 %芒廷维尤: 17.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.0 %苏州: 1.0 %莆田: 0.1 %莆田: 0.1 %菏泽: 0.1 %菏泽: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 8.7 %西宁: 8.7 %西安: 0.5 %西安: 0.5 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.5 %郑州: 1.5 %重庆: 0.3 %重庆: 0.3 %镇江: 2.4 %镇江: 2.4 %长沙: 1.5 %长沙: 1.5 %阜阳: 0.1 %阜阳: 0.1 %青岛: 1.9 %青岛: 1.9 %其他其他Central DistrictChina[]上海东莞临汾丽水佛山保定兰州北京十堰南京南宁南通厦门台州合肥哈尔滨嘉兴天津安庆宜宾宣城崇左常州常德广州弗吉张家口徐州成都扬州无锡昆明晋城朝阳杭州株洲桂林武汉汕头江门池州沈阳济南济宁济源深圳温州湖州漯河潍坊百色盐城眉山石家庄福州绍兴肇庆芒廷维尤芝加哥苏州莆田菏泽蚌埠衡阳西宁西安西雅图贵阳运城遵义邯郸郑州重庆镇江长沙阜阳青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (449) PDF downloads(48) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return