Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HE Wen-shan, ZHANG Ru, LI Si-qi, LI Wen-jin, SONG Zhe-hua, PENG Guang, SHEN Peng, WANG Xiao-hui. SCREENING OF A CHLORTETRACYCLINE-DEGRADING STRAIN AND ITS DEGRADATION CONDITIONS OPTIMIZATION USING RESPONSE SURFACE METHODOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 53-58,66. doi: 10.13205/j.hjgc.202205008
Citation: HE Wen-shan, ZHANG Ru, LI Si-qi, LI Wen-jin, SONG Zhe-hua, PENG Guang, SHEN Peng, WANG Xiao-hui. SCREENING OF A CHLORTETRACYCLINE-DEGRADING STRAIN AND ITS DEGRADATION CONDITIONS OPTIMIZATION USING RESPONSE SURFACE METHODOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 53-58,66. doi: 10.13205/j.hjgc.202205008

SCREENING OF A CHLORTETRACYCLINE-DEGRADING STRAIN AND ITS DEGRADATION CONDITIONS OPTIMIZATION USING RESPONSE SURFACE METHODOLOGY

doi: 10.13205/j.hjgc.202205008
  • Received Date: 2021-09-01
    Available Online: 2022-07-02
  • A chlortetracycline-degrading strain was isolated from the activated sludge of a chlortetracycline pharmaceutical factory in Zhumadian in Henan. Based on the analysis of its 16S rDNA gene sequence, the isolated strain named JMS-B01 was identified as a member of the genus Bacillus. To improve the chlortetracycline degradation rate, the degradation conditions were optimized. Firstly, three factors playing important roles in the chlortetracycline degradation rate were selected based on the orthogonal test. Then box-Behnken experimental design and response surface method were used to analyze the optimal degradation conditions. The fitting curve had a good correlation with the measured values. The optimal conditions were as follows:temperature of 34.0℃, chlortetracycline concentration of 102.5 mg/L, inoculation amount of 2%(V/V). Under the optimal conditions mentioned above, the chlortetracycline degradation rate reached 96.50%. Temperature was one of the most important factors affecting the chlortetracycline degradation rate of strain JMS-B01.
  • [1]
    展海银,周启星.不同介质中四环素类抗生素的检出水平与污染扩散[J].生态学杂志,2020,39(12):4206-4215.
    [2]
    徐向月,马文瑾,安博宇,等.四环素类抗生素在环境中的风险评估研究进展[J].中国畜牧兽医,2020,47(3):948-957.
    [3]
    敖蒙蒙,魏健,陈忠林,等.四环素类抗生素环境行为及其生态毒性研究进展[J].环境工程技术学报,2021,11(2):314-324.
    [4]
    王晓娟,年夫照,夏运生,等.抗生素使用现状及其在生态环境系统的行为研究进展[J].中国土壤与肥料,2020(6):286-292.
    [5]
    ALBERT J.Strategic dynamics of antibiotic use and the evolution of antibiotic-resistant infections[J].International Journal of Industrial Organization,2021,77:102759.
    [6]
    展海银,周启星.环境中四环素类抗生素污染处理技术研究进展[J].环境工程技术学报,2021,11(3):571-581.
    [7]
    JJEMBA P K.Excretion and ecotoxicity of pharmaceutical and personal care products in the environment[J].Ecotoxicology and Environmental Safety,2006,63(1):113-130.
    [8]
    DAGHRIR R,DROGUI P J E C L.Tetracycline antibiotics in the environment:a review[J].Environmental Chemistry Letters,2013,11(3):209-227.
    [9]
    MA X,YANG Z R,XU T T,et al.Chlortetracycline alters microbiota of gut or feces in pigs and leads to accumulation and migration of antibiotic resistance genes[J].Science of the Total Environment,2021,796:148976.
    [10]
    刘鹏霄,王旭,冯玲.自然水环境中抗生素的污染现状、来源及危害研究进展[J].环境工程,2020,38(5):36-42.
    [11]
    杨晓芳,杨涛,王莹,等.四环素类抗生素污染现状及其环境行为研究进展[J].环境工程,2014,32(2):123-127.
    [12]
    秦小宁.改性凹凸棒土和膨润土对水中四环素类抗生素的吸附去除研究[D].兰州:兰州交通大学,2020.
    [13]
    南志江,蒋煜峰,毛欢欢,等.玉米秸秆生物炭对灰钙土吸附金霉素的影响[J].环境科学,2021,42(12):9.
    [14]
    安璐,肖鹏飞.H2O2改性活性炭活化过硫酸钠降解盐酸金霉素[J].水处理技术,2021,47(5):62-66.
    [15]
    安璐,肖鹏飞.活性炭活化过硫酸钠氧化降解盐酸金霉素的研究[J].现代化工,2020,40(8):103-106

    ,12.
    [16]
    LEE C,JEONG S,JU M,et al.Fate of chlortetracycline antibiotics during anaerobic degradation of cattle manure[J].Journal of Hazardous Materials,2020,386:121894.
    [17]
    赵永斌.3种四环素类抗生素降解菌的筛选及降解特性的研究[D].晋中:山西农业大学,2015.
    [18]
    成洁,杜慧玲,张天宝,等.四环素类抗生素降解菌的分离与鉴定[J].核农学报,2017,31(5):884-888.
    [19]
    AYDIN E,SAHIN M,TASKAN E,et al.Chlortetracycline removal by using hydrogen based membrane biofilm reactor[J].Journal of Hazardous Materials,2016,320:88-95.
    [20]
    赵晨光,陈路鹏,黄祚建,等.猪粪中四环素类抗生素降解菌的筛选及其在堆肥中的应用研究[J].家畜生态学报,2020,41(9):53-58.
    [21]
    张惠艳.金霉素降解菌株特性及代谢产物研究[D].北京:北京理工大学,2015.
    [22]
    LIAO X B,ZOU R S,LI B X,et al.Biodegradation of chlortetracycline by acclimated microbiota[J].Process Safety and Environmental Protection,2017,109:11-17.
    [23]
    赵凤,沈忱思,柳建设.铜绿微囊藻强化降解金霉素及降解产物的毒性评估[J].分析试验室,2020,39(5):580-585.
    [24]
    ZHAO F,ZHANG D,XU C Y,et al.The enhanced degradation and detoxification of chlortetracycline by Chlamydomonas reinhardtii[J].Ecotoxicology and Environmental Safety,2020,196:110552.
    [25]
    张迪,厉圆,沈忱思,等.金霉素及其异构体降解产物对斜生栅藻的毒性效应研究[J].农业环境科学学报,2019,38(4):756-764.
    [26]
    李莉,张赛,何强,等.响应面法在试验设计与优化中的应用[J].实验室研究与探索,2015,34(8):41-45.
    [27]
    栾庆祥,赵杨,周欣,等.单因素试验结合响应面分析法优化杜仲最佳提取工艺[J].药物分析杂志,2013,33(5):859-865.
    [28]
    李文兵,毕江涛,惠治兵.一株纤维素降解菌的分离、鉴定及发酵优化[J].安徽农业大学学报,2021,48(3):458-466.
  • Relative Articles

    [1]LE Jihang, WANG Wenlong, WU Qianyuan, CHEN Zhuo, WU Yinhu, JIA Haifeng, LIU Fanghua, WANG Fang, HU Hongying. Quality and risk characteristics of effluent from wastewater treatment plants in central area of Luzhou[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 135-143. doi: 10.13205/j.hjgc.202501015
    [2]ZHANG Li, HE Shanshan, ZHEN Xianghua, XIE Pengchao, WAN Nianhong, LIU Haiyan. ORGANIC EMERGING CONTAMINANTS REMOVAL PROCESS IN WASTEWATER TREATMENT PLANTS AND PROSPECT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 15-24. doi: 10.13205/j.hjgc.202407002
    [3]XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
    [4]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [5]LI Feifei, SU Zhiguo, CAO Feng, MU Qinglin, HUANG Bei, CHEN Lüjun, WEN Donghui. CONTRIBUTION OF WASTEWATER DISCHARGE FROM SEWAGE TREATMENT PLANTS TO ANTIBIOTIC POLLUTION IN COASTAL WATER: A CASE STUDY OF HANGZHOU BAY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 1-8. doi: 10.13205/j.hjgc.202404001
    [6]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [7]WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026
    [8]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [9]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [10]LIU Sixuan, LI Yiping, ZHU Ya, WEI Yao, LI Ronghui, WANG Can, CHEN Yu, PENG Yanli, LIANG Dan. INFLUENCE OF WATER LEVEL DESCENDING OF LAYERED RESERVOIRS ON WATER QUALITY CHARACTERISTICS IN SOUTH CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 179-186,194. doi: 10.13205/j.hjgc.202305024
    [11]ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009
    [12]YU Huaixing, YUAN Ding, HE Zihao. APPLICATION OF SHORT-RANGE PRECISION AERATION AND INTELLIGENT CONTROL SYSTEM IN SEWAGE TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 165-171. doi: 10.13205/j.hjgc.202311026
    [13]MENG Xiaojun, HAN Yong, HUANG Zhigui, GONG Xiaosong. CHALLENGES AND SOLUTIONS OF ANAMMOX IN MAINSTREAM WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 203-214. doi: 10.13205/j.hjgc.202210027
    [14]LI Wen-gang, SUN Yao-sheng, YAO Qiang, CHEN Fang, LIU Jing-yi. REVIEW ON POLLUTION STATUS AND ADVANCED TREATMENT TECHNOLOGIES OF EMERGING ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 77-87. doi: 10.13205/j.hjgc.202108010
    [15]HE Yuan-pu, FAN Hai-tao, LIU Guo-hua, QI Lu, XU Xiang-long, SHAO Yu-ting, WANG Hong-chen. STATUS AND TREND OF AERATION CONTROL STRATEGY DURING BIOLOGICAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 34-41,121. doi: 10.13205/j.hjgc.202106006
    [16]YU Yong, YU Sheng-hua, CHEN Da-gang. PRACTICE AND REFLECTION ON CLEAN EMISSION TECHNOLOGY TRANSFORMATION OF URBAN SEWAGE TREATMENT PLANTS IN ZHEJIANG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 19-24. doi: 10.13205/j.hjgc.202007003
    [17]SHEN Jie, JIN Wei. REVIEW ON EFFECT OF URBAN WASTEWATER TREATMENT PLANT EFFLUENT ON RECEIVING WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 92-98,115. doi: 10.13205/j.hjgc.202003016
    [18]SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005
    [20]INFLUENCES OF DO AND AERATION TIME ON DENITRIFICATION PERFORMANCE OF AEROBIC DENITRIFYING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 62-64. doi: 10.13205/j.hjgc.201412010
  • Cited by

    Periodical cited type(9)

    1. 窦娜莎,孙治国,付友先,刘克琼,盛祥涛,杜欣然,牛亚婷,卞荣星,赵旭. 北方某渗滤液生化处理系统水质变化特征及节能降耗对策研究. 山东化工. 2025(02): 267-271 .
    2. 肖梅. 基于神经网络的污水处理鼓风机曝气控制方法. 自动化与仪器仪表. 2025(02): 116-120 .
    3. 于金旗,孙磊,刘然彬,薛松,杨童,张鹤清. 污水处理厂减污降碳技术探讨. 水处理技术. 2024(04): 18-25 .
    4. 王兴斌. 城镇污水处理厂碳减排技术研究和应用. 绿色矿冶. 2024(03): 88-93+98 .
    5. 丁万杰,刘钊,王孝红. 石化废水处理溶解氧浓度优化控制研究进展. 现代化工. 2024(S1): 16-20 .
    6. 龚洁,郝森舰,芦川,冯立辉,邹曦,朱利明. 苦草-附着生物复合系统对水体磺胺降解的贡献评估. 水生态学杂志. 2023(05): 142-148 .
    7. 朱文秀. 污水处理中技术创新与节能降耗研究. 科技创新与应用. 2022(27): 174-177 .
    8. 高新磊,邱颉,黄睿,房睿. 精准曝气技术在污水处理中的研究进展. 资源节约与环保. 2022(10): 93-96 .
    9. 楚金喜,付根深,王小玲,高静,赵晓娟. 基于改良UCT工艺的精确曝气技术的应用. 净水技术. 2022(11): 70-75 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.9 %FULLTEXT: 10.9 %META: 83.3 %META: 83.3 %PDF: 5.8 %PDF: 5.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.3 %China: 0.3 %[]: 0.1 %[]: 0.1 %上海: 3.5 %上海: 3.5 %东莞: 1.3 %东莞: 1.3 %临汾: 0.1 %临汾: 0.1 %丽水: 0.4 %丽水: 0.4 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 5.9 %北京: 5.9 %十堰: 1.0 %十堰: 1.0 %南京: 2.9 %南京: 2.9 %南宁: 1.5 %南宁: 1.5 %南通: 0.4 %南通: 0.4 %厦门: 0.4 %厦门: 0.4 %台州: 0.1 %台州: 0.1 %合肥: 1.4 %合肥: 1.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 2.8 %天津: 2.8 %安庆: 0.1 %安庆: 0.1 %宜宾: 0.1 %宜宾: 0.1 %宣城: 1.3 %宣城: 1.3 %崇左: 0.1 %崇左: 0.1 %常州: 0.9 %常州: 0.9 %常德: 0.1 %常德: 0.1 %广州: 1.1 %广州: 1.1 %弗吉: 0.4 %弗吉: 0.4 %张家口: 1.4 %张家口: 1.4 %徐州: 0.1 %徐州: 0.1 %成都: 1.3 %成都: 1.3 %扬州: 1.8 %扬州: 1.8 %无锡: 0.5 %无锡: 0.5 %昆明: 0.4 %昆明: 0.4 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 4.3 %杭州: 4.3 %株洲: 0.5 %株洲: 0.5 %桂林: 0.1 %桂林: 0.1 %武汉: 1.3 %武汉: 1.3 %汕头: 0.1 %汕头: 0.1 %江门: 0.8 %江门: 0.8 %池州: 0.1 %池州: 0.1 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.6 %济南: 0.6 %济宁: 0.4 %济宁: 0.4 %济源: 0.1 %济源: 0.1 %深圳: 1.1 %深圳: 1.1 %温州: 0.8 %温州: 0.8 %湖州: 0.4 %湖州: 0.4 %漯河: 6.6 %漯河: 6.6 %潍坊: 0.4 %潍坊: 0.4 %百色: 0.1 %百色: 0.1 %盐城: 1.1 %盐城: 1.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.6 %福州: 0.6 %绍兴: 0.1 %绍兴: 0.1 %肇庆: 0.3 %肇庆: 0.3 %芒廷维尤: 17.7 %芒廷维尤: 17.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.0 %苏州: 1.0 %莆田: 0.1 %莆田: 0.1 %菏泽: 0.1 %菏泽: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 8.7 %西宁: 8.7 %西安: 0.5 %西安: 0.5 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.5 %郑州: 1.5 %重庆: 0.3 %重庆: 0.3 %镇江: 2.4 %镇江: 2.4 %长沙: 1.5 %长沙: 1.5 %阜阳: 0.1 %阜阳: 0.1 %青岛: 1.9 %青岛: 1.9 %其他其他Central DistrictChina[]上海东莞临汾丽水佛山保定兰州北京十堰南京南宁南通厦门台州合肥哈尔滨嘉兴天津安庆宜宾宣城崇左常州常德广州弗吉张家口徐州成都扬州无锡昆明晋城朝阳杭州株洲桂林武汉汕头江门池州沈阳济南济宁济源深圳温州湖州漯河潍坊百色盐城眉山石家庄福州绍兴肇庆芒廷维尤芝加哥苏州莆田菏泽蚌埠衡阳西宁西安西雅图贵阳运城遵义邯郸郑州重庆镇江长沙阜阳青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (239) PDF downloads(10) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return