Core Chinese Journal
Source Journal of CSCD(Core Version)
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 40 Issue 5
Jul.  2022
Turn off MathJax
Article Contents
ZHU Xin-yu, ZHANG Jie, SUN Xiao-jiao, CHEN Guang-hui, WANG Xiao-xia, ZHANG Pei-yu, QIU Yan-ling. BIOAUGMENTATION OF CORN STALKS FERMENTATION BY ANAEROBIC BENZOATE-DEGRADING BACTERIUM SPOROTOMACULUM SYNTROPHICUM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 75-81. doi: 10.13205/j.hjgc.202205011
Citation: ZHU Xin-yu, ZHANG Jie, SUN Xiao-jiao, CHEN Guang-hui, WANG Xiao-xia, ZHANG Pei-yu, QIU Yan-ling. BIOAUGMENTATION OF CORN STALKS FERMENTATION BY ANAEROBIC BENZOATE-DEGRADING BACTERIUM SPOROTOMACULUM SYNTROPHICUM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 75-81. doi: 10.13205/j.hjgc.202205011

BIOAUGMENTATION OF CORN STALKS FERMENTATION BY ANAEROBIC BENZOATE-DEGRADING BACTERIUM SPOROTOMACULUM SYNTROPHICUM

doi: 10.13205/j.hjgc.202205011
  • Received Date: 2021-09-04
    Available Online: 2022-07-02
  • The degradation of lignin is an effective way to improve the biogas fermentation efficiency of lignocellulosic materials, such as straw. For anaerobic microorganisms, lignin is difficult to use, however, recent studies indicated that lignin can be decomposed and utilized by microorganisms through aromatic compounds such as benzoate and phenol. The effect of bioaugmentation with a benzoate-degrading bacterium Sporotomaculum syntrophicum strain FB on the anaerobic corn stalk fermentation was evaluated by batch experiments. The results showed that when the inoculation ratio of S. syntrophicum was 5%, 10%, and 20%, the methane yields were 252.2, 244.9, 234.8 mL/g TS respectively, increased by 20.5%, 17.0%, 12.2% comparing with the control. TS removal rates increased by 2.9%, 3.1%, and 3.4%, respectively. The removal rates of cellulose, hemicellulose and lignin increased by 12%~13%, 3%~5% and 38%~46%, respectively, with the addition of 5%~20% S. syntrophicum. The further experiment verified that the addition of S. syntrophicum could improve the methane yields of methyl cellulose, xylan, and alkali lignin(models for cellulose, hemicelluloses, and lignin, respectively) by 15.7%, 11.4%, 7.8%.
  • loading
  • [1]
    VELUCHAMY C,KALAMDHAD A S.Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge:a review[J].Bioresource Technology,2017,245:1206-1219.
    [2]
    BUGG T D H,AHMAD M,HARDIMAN E M,et al.The emerging role for bacteria in lignin degradation and bio-product formation[J].Current Opinion in Biotechnology,2011,22(3):394-400.
    [3]
    GLISSMANN K,HAMMER E,CONRAD R.Production of aromatic compounds during methanogenic degradation of straw in rice field soil[J].FEMS Microbiology Ecology,2005,52(1):43-48.
    [4]
    HECHT C,BIELER,GRIEHL C.Liquid chromatographic-mass spectrometric-analyses of anaerobe protein degradation products[J].Journal of Chromatography A,2005,1088(1/2):121-125.
    [5]
    QIAO J T,QIU Y L,YUAN X Z,et al.Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw[J].Bioresource Technology,2013,143:512-518.
    [6]
    谢彤彤,孙晓娇,吴凯旋,等.酱酒丢糟沼气发酵特性及微生物群落特征[J].应用与环境生物学报,2021,27(5):1311-1317.
    [7]
    FANTROUSSI S E,AGATHOS S N.Is bioaugmentation a feasible strategy for pollutant removal and site remediation?[J].Current Opinion in Microbiology,2005,8(3):268-275.
    [8]
    LEVEN L,NYBERG K,SCHNURER A.Conversion of phenols during anaerobic digestion of organic solid waste:a review of important microorganisms and impact of temperature[J].Journal of Environmental Management,2012,95:S99-S103.
    [9]
    QIU Y L,HANADA S,OHASHI A,et al.Syntrophorhabdus aromaticivorans gen.nov.,sp.nov.,the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen[J].Applied and Environmental Microbiology,2008,74(7):2051-2058.
    [10]
    QIU Y L,SEKIGUCHI Y,IMACHI H,et al.Sporotomaculum syntrophicum sp.nov.,a novel anaerobic,syntrophic benzoate-degrading bacterium isolated from methanogenic sludge treating wastewater from terephthalate manufacturing[J].Archives of Microbiology,2003,179(4):242-249.
    [11]
    SEKIGUCHI Y,KAMAGATA Y,NAKAMURA K,et al.Syntrophothermus lipocalidus gen.nov.,sp.nov.,a novel thermophilic,syntrophic,fatty-acid-oxidizing anaerobe which utilizes isobutyrate[J].International Journal of Systematic and Evolutionary Microbiology,2000,50(2):771-779.
    [12]
    CLESCERL L S,GREENBERG A E,EATON A D.Standard methods for examination of water and wastewater (20th Edition)[M].Washington DC:American Public Health Association,1999.
    [13]
    VAN SOEST P J,ROBERTSON J B,LEWIS B A.Methods for dietary fiber,neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition[J].Journal of Dairy Science,1991,74(10):3583-3597.
    [14]
    李倩,许之扬,阮文权.黄孢原毛平革菌后处理深度提升醋糟产甲烷潜力[J].浙江农业学报,2020,32(5):904-911.
    [15]
    AKILA G,CHANDRA T S.Stimulation of biomethanation by Clostridium sp.PXYL1 in coculture with a Methanosarcina strain PMET1 at psychrophilic temperatures[J].Journal of Applied Microbiology,2010,108(1):204-213.
    [16]
    王芳,刘晓飞,刘晓风,等.产氢菌对沼气发酵的生物强化作用[J].应用与环境生物学报,2013,19(2):351-355.
    [17]
    KO J J,SHIMIZU Y,IKEDA K,et al.Biodegradation of high molecular weight lignin under sulfate reducing conditions:lignin degradability and degradation by-products[J].Bioresource Technology,2009,100(4):1622-1627.
    [18]
    FRIGON J C,GUIOT S R.Biomethane production from starch and lignocellulosic crops:a comparative review[J].Biofuels,Bioproducts and Biorefining,2010,4(4):447-458.
    [19]
    BARAKAT A,MONLAU F,Steyer J P,et al.Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production[J].Bioresource Technology,2012,104:90-99.
    [20]
    WU Z J,DONG H J,ZOU L D,et al.Enriched microbial community in bioaugmentation of petroleum-contaminated soil in the presence of wheat straw[J].Applied Biochemistry and Biotechnology,2011,164(7):1071-1082.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return