Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Xu-dong, LI Xian-guo, ZHANG Hai-qing, PAN Kang-hong, ZHANG Da-hai. EFFECT OF MEDIUM AND HIGH MOLECULAR WEIGHT POLYACRYLAMIDE ON PERFORMANCE OF SLUDGE ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 82-87. doi: 10.13205/j.hjgc.202205012
Citation: WANG Xu-dong, LI Xian-guo, ZHANG Hai-qing, PAN Kang-hong, ZHANG Da-hai. EFFECT OF MEDIUM AND HIGH MOLECULAR WEIGHT POLYACRYLAMIDE ON PERFORMANCE OF SLUDGE ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 82-87. doi: 10.13205/j.hjgc.202205012

EFFECT OF MEDIUM AND HIGH MOLECULAR WEIGHT POLYACRYLAMIDE ON PERFORMANCE OF SLUDGE ANAEROBIC DIGESTION

doi: 10.13205/j.hjgc.202205012
  • Received Date: 2021-08-25
    Available Online: 2022-07-02
  • Dehydration and successive anaerobic digestion are widely used for the reduction and resource utilization of the excess sludge from municipal wastewater treatment plants. Cationic polyacrylamide(cPAM) is a commonly used flocculant in the dehydration process, and its influence on the performance of subsequent anaerobic digestion is still not well understood. This study found that cPAM with medium and high molecular weight could inhibit the solubilization and hydrolysis of organic matter, and the efficiency of the subsequent acidogenesis and methanogenesis during anaerobic digestion. In addition, the inhibition effect of medium molecular weight cPAM was stronger. Compared with the control, the maximum yields of soluble protein, polysaccharide, and short-chain fatty acids(SCFAs) decreased by 22.3%, 28.4% and 38.6%, respectively, for the digestion of sludge after the addition of medium molecular weight cPAM; while they declined by 7.4%, 19.4% and 25.9% respectively for high molecular weight cPAM. The 30-day cumulative methane production for sludge digestion with medium and high molecular weight cPAM were(40.4±1.4) mL CH4/g VSS and(49.8±1.3) mL CH4/g VSS, respectively, which were 33.7% and 18.3% lower than that of the control. The results suggested that the effect of cPAM, including the amount and molecular weight of cPAM, on the performance of subsequent anaerobic digestion should be integrated into consideration in the process of excess sludge dewatering to achieve the best overall benefit.
  • [1]
    戴晓虎.我国污泥处理处置现状及发展趋势[J].科学,2020,72(6):30-34.
    [2]
    APPELS L,BAEYENS J,DEGRÈVE J,et al.Principles and potential of the anaerobic digestion of waste-activated sludge[J].Progress in Energy and Combustion Science,2008,34(6):755-781.
    [3]
    熊焕嘉,刘峙嵘.絮凝剂的开发及其应用进展[J].油气田环境保护,2011,21(2):30-33.
    [4]
    施正华,李秀芬,宋小莉,等.采用阳离子聚丙烯酰胺改善污泥水解液的脱水性能[J].2017,11(10):5615-5620.
    [5]
    CHU C P,LEE D J,CHANG BEA-VEN,et al. "Weak" ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids[J].Water Research,2002,36(11):2681-2688.
    [6]
    何旭,俞志敏,卫新来.聚丙烯酰胺对生活污泥脱水的实验研究[J].环境科学导刊,2015,34(1):61-66.
    [7]
    WANG D B,LIU X R,ZENG G M,et al.Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge[J].Water Research,2018,130(Mar.1):281-290.
    [8]
    刘建平,王雪芳,杨小敏.高分子量聚丙烯酰胺的合成与应用进展[J].化学工程师,2010(8):26-28.
    [9]
    FEDERATION W E,APH A.Standard methods for the examination of water and wastewater[J].American Public Health Association:Washington,DC,USA,2005.
    [10]
    LIU H B,WANG Y Y,WANG L,et al.Stepwise hydrolysis to improve carbon releasing efficiency from sludge[J].Water Research,2017,119:225-233.
    [11]
    ZHAO J W,WANG D B,LI X M,et al.Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge[J].Water Research,2015,78:111-120.
    [12]
    ELEFSINIOTIS P,OLDHAM W.Effect of HRT on acidogenic digestion of primary sludge[J].Journal of Environmental Engineering,1994,120(3):645-660.
    [13]
    LIU Y D,ZHU Y D,JIA H H,et al.Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw[J].Bioresource Technology,2017,244(Pt 1):445-451.
    [14]
    YUAN Y Y,HU X Y,CHEN H B,et al.Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge[J].Science of the Total Environment,2019,694:133741.
    [15]
    卢怡清,许颖,董滨,等.去除城市生活污泥中有机络合态金属强化其厌氧生物制气[J].环境科学,2018,39(1):284-291.
    [16]
    LU K X,PING Q,LI Y M.Understanding the abiotic interaction between phosphate and macromolecular organic compounds in waste activated sludge during anaerobic treatment[J].Science of the Total Environment,2021,782:146864.
    [17]
    BASUVARAJ M,FEIN J,LISS S N.Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc[J].Water Research,2015,82:104-117.
    [18]
    LIANG J L,LUO L W,LI D Y,et al.Promoting anaerobic co-digestion of sewage sludge and food waste with different types of conductive materials:performance,stability,and underlying mechanism[J].Bioresource Technology,2021,337:125384.
    [19]
    GIANFREDA L,RAO M A.Potential of extra cellular enzymes in remediation of polluted soils:a review[J].Enzyme and Microbial Technology,2004,35(4):339-354.
    [20]
    LUO Y L,YANG Z H,XU Z Y,et al.Effect of trace amounts of polyacrylamide (PAM) on long-term performance of activated sludge[J].Journal of Hazardous Materials,2011,189(1/2):69-75.
    [21]
    CHU C P,LEE D J,CHANG B V,et al.Anaerobic digestion of polyelectrolyte flocculated waste activated sludge[J].Chemosphere,2003,53(7):757-764.
    [22]
    XIONG B Y,LOSS R D,SHIELDS D,et al.Polyacrylamide degradation and its implications in environmental systems[J].npj Clean Water,2018,1(1):17-19.
    [23]
    DAI X H,LUO F,YI J,et al.Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system[J].Bioresource Technology,2014,153:55-61.
    [24]
    DAI X H,XU Y,DONG B.Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge[J].Water Research,2017,115:220-228.
    [25]
    GUO H X,WANG Y F,TIAN L X,et al.Insight into the enhancing short-chain fatty acids (SCFAs) production from waste activated sludge via polyoxometalates pretreatment:mechanisms and implications[J].Science of the Total Environment,2021,800:149392.
    [26]
    PANG H L,LI L L,HE J G,et al.New insight into enhanced production of short-chain fatty acids from waste activated sludge by cation exchange resin-induced hydrolysis[J].Chemical Engineering Journal,2020,388:124235.
    [27]
    LIU X R,XU Q X,WANG D B,et al.Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge[J].Water Research,2019,155:142-151.
    [28]
    WU Y Q,SONG K.Effect of thermal activated peroxydisulfate pretreatment on short-chain fatty acids production from waste activated sludge anaerobic fermentation[J].Bioresource Technology,2019,292:121977.
    [29]
    ZHAO J W,GUI L,WANG Q L,et al.Aged refuse enhances anaerobic digestion of waste activated sludge[J].Water Research,2017,123:724-733.
    [30]
    KHADEM A F,AZMAN S,PLUGGE C M,et al.Effect of humic acids on the activity of pure and mixed methanogenic cultures[J].Biomass and Bioenergy,2017,99:21-30.
  • Relative Articles

    [1]XU Yi, JIANG Xu, XU Yingming. EFFECT OF ADDING KNO3 AND KH2PO4 ON IMMOBILIZATION REMEDIATION OF CADMIUM IN POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 229-236. doi: 10.13205/j.hjgc.202412027
    [2]ZHOU Ziyan, HUANG Xiang, GU Jinchuan, XUE Jia, WU Yi, YONG Yi. PASSIVATION OF ZINC, LEAD AND CADMIUM CONTAMINATED SOIL BY INORGANIC SALT MODIFIED BENTONITE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 150-158. doi: 10.13205/j.hjgc.202307021
    [3]YANG Shu, ZHOU Honghui, LI Ying, ZHANG Yun, TIAN Senlin, CHENG Xia, HU Han, HU Xuewei. EFFECT OF SAPONIN ON BIOLOGICAL OXIDATION OF PYRITE-CONTAINING SOLID WASTE FROM MINING AND DRESSING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 129-135,215. doi: 10.13205/j.hjgc.202303017
    [4]MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
    [5]LI Yalin, LI Peng, TANG Yifan, ZHANG Wei, WANG Enci, JIN Mingyu. IMPACT OF DC VOLTAGE ON ELECTRO-REMEDIATION OF Pb AND As CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 131-135,184. doi: 10.13205/j.hjgc.202208018
    [6]WANG Jinnan, WU Yufeng, LI Liangzhong, YU Lu, YANG Mengchuan, LI Bin, GUO Lianjie. RESEARCH PROGRESS OF BARRIER TECHNOLOGIES FOR SITE COMBINED HEAVY METAL POLLUTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 244-253. doi: 10.13205/j.hjgc.202204034
    [7]LI Zhijian, WEI Li, NI Heng. RESEARCH ADVANCES AND CASE STUDY ON PASSIVATION AND CLOGGING IN PERMEABLE REACTIVE BARRIER(PRB)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 206-213,224. doi: 10.13205/j.hjgc.202202031
    [8]XU Yi, YANG Shi-hong, YOU Guo-xiang, HOU Jun. REVIEW OF ROLES OF EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) IN MEDIATING THE STRUCTURE, FUNCTION AND SURFACE PROPERTIES OF MICROBIAL AGGREGATES IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 238-245,269. doi: 10.13205/j.hjgc.202209032
    [9]LI Yajing, WANG Shaopo, LIU Lu, JIA Liyuan. SECRETORY CHARACTERISTICS OF EPS AND THE SIGNAL MOLECULES RELEASE UNDER DIFFERENT ORGANIC LOADING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 47-52. doi: 10.13205/j.hjgc.202202008
    [10]MAO Xinyu, YU Huaizhi, ZHAI Senmao, JIANG Xiaosan, XU Zhou, WANG Qilin. LONG-TERM STABILIZATION EFFECT AND ECOLOGICAL RISK ASSESSMENT OF SOIL CADMIUM AND LEAD BY USING MODIFIED COCONUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 140-146. doi: 10.13205/j.hjgc.202204020
    [11]HUO Jiajia, LUO Shengxu, WANG Yanshi, WANG Xinwei, DENG Qin, LI Jinying. PASSIVATION OF LEAD IN SOIL BY FULVIC ACID-NANO-ZERO-VALENT IRON COMPLEX[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 112-120. doi: 10.13205/j.hjgc.202204016
    [12]PENG Yan, CHEN Di-yun, CHEN Nan, ZENG Lin-wei. PASSIVATION EFFECT OF CALCIUM PHOSPHATE ON URANIUM IN SEDIMENTS IN DOWNSTREAM WATERS OF A URANIUM MINE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 13-19,24. doi: 10.13205/j.hjgc.202104003
    [13]CHEN Jin-yuan, LIU Xue-wen, LV Ju-feng, LV Bo-sheng, WEI Xiu-zhen. EFFECT OF BIOCHAR ON COMPOSITION OF SMP AND EPS IN ACTIVATED SLUDGE AND NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 133-138,207. doi: 10.13205/j.hjgc.202009022
    [14]CHEN Yun-fan, QIAN Meng-meng, KANG Zi-wei, DING Jia-hui, CHEN Jing, JIA Wen-lin. START-UP OF A COMPLETELY AUTOTROPHIC NITROGEN REMOVAL OVER NITRITE PROCESS ENHANCED BY MAGNETIC FIELD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 142-146. doi: 10.13205/j.hjgc.202008024
    [15]SONG Le-yuan, GUO Xin-chao, YU Jing. EFFECT OF SUSPENDED CARRIERS ADDITION ON PERFORMANCE AND MEMBRANE FOULING OF AnMBR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 87-92. doi: 10.13205/j.hjgc.202001013
    [16]ZHOU Wen-wu, CHEN Guan-yi, DAN Zeng, QIONGDA Zhuo-ma, ZHOU Peng, WANG Jing. COMPARISON AND SELECTION OF REHABILITATION SCHEMES FOR GROUNDWATER LEAD IN LANDFILL AREA: A CASE STUDY OF LHASA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 88-93. doi: 10.13205/j.hjgc.202006014
    [17]ZHOU Yu-han, PAN Yang, ZHANG Rui-liang, ZHENG Chao-ting, ZHI Zhong-xiang, ZHEN Guang-yin. EFFECT OF ACID-ALKALI MICROWAVE COMBINED PRETREATMENT ON RUPTURE OF SLUDGE EXTRACELLULAR POLYMERIC SUBSTANCES AND METHANE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 19-25,31. doi: 10.13205/j.hjgc.202012004
    [18]CAO Da-qi, SUN Xiu-zhen, FANG Xiao-min, JIN Jing-yi, YANG Xiao-xuan, HAO Xiao-di. RECOVERY OF EXTRACELLULAR POLYMERIC SUBSTANCE: IMPACT FACTORS IN FORWARD OSMOSIS SEPARATION OF SODIUM ALGINATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 71-75. doi: 10.13205/j.hjgc.202008012
    [19]Cong Jing Yan Dahai Li Li Jiang Xuguang Zhou Yingnan He Jie Wang Qi, . CONDENSATION AND ABSORPTION KINETICS OF THE CEMENT RAW MEAL ON LEAD AND CADMIUM AT LOW-TEMPERATURES DURING CO-PROCESSING IN CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 103-107. doi: 10.13205/j.hjgc.201504022
    [20]STUDY ON THE START-UP TECHNOLOGY OF TREATING KITCHEN WASTE IN IC ANAEROBIC REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 87-90. doi: 10.13205/j.hjgc.201412015
  • Cited by

    Periodical cited type(1)

    1. 党秀丽,阿娜尔,苏燕,管秀静,欧成浩,田楚琪,王坚. 基于文献计量法对场地土壤重金属污染修复研究进展的知识图谱分析. 土壤通报. 2024(01): 277-287 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.0 %FULLTEXT: 14.0 %META: 85.3 %META: 85.3 %PDF: 0.7 %PDF: 0.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.1 %其他: 19.1 %[]: 0.7 %[]: 0.7 %上海: 2.9 %上海: 2.9 %临汾: 0.7 %临汾: 0.7 %丽水: 0.7 %丽水: 0.7 %北京: 2.2 %北京: 2.2 %十堰: 0.7 %十堰: 0.7 %天津: 0.7 %天津: 0.7 %常德: 0.7 %常德: 0.7 %扬州: 1.5 %扬州: 1.5 %昆明: 2.2 %昆明: 2.2 %晋城: 1.5 %晋城: 1.5 %朝阳: 0.7 %朝阳: 0.7 %杭州: 1.5 %杭州: 1.5 %武汉: 0.7 %武汉: 0.7 %泰安: 1.5 %泰安: 1.5 %济源: 1.5 %济源: 1.5 %漯河: 1.5 %漯河: 1.5 %芒廷维尤: 30.1 %芒廷维尤: 30.1 %芝加哥: 1.5 %芝加哥: 1.5 %苏州: 1.5 %苏州: 1.5 %西宁: 11.0 %西宁: 11.0 %贵阳: 0.7 %贵阳: 0.7 %运城: 7.4 %运城: 7.4 %遵义: 0.7 %遵义: 0.7 %邯郸: 0.7 %邯郸: 0.7 %郑州: 2.2 %郑州: 2.2 %重庆: 0.7 %重庆: 0.7 %长沙: 0.7 %长沙: 0.7 %长治: 1.5 %长治: 1.5 %其他[]上海临汾丽水北京十堰天津常德扬州昆明晋城朝阳杭州武汉泰安济源漯河芒廷维尤芝加哥苏州西宁贵阳运城遵义邯郸郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads(12) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return