Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WEN Hao, YAN Yuting, ZHONG Jiewen, ZHANG Haowen, YIN Hongwei, TIAN Siyu. EFFECT OF BUOY-BEAD MATERIAL ON CHLORELLA VULGARIS HARVESTING PERFORMANCE DURING FLOTATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 26-31. doi: 10.13205/j.hjgc.202211004
Citation: WANG Xu-dong, LI Xian-guo, ZHANG Hai-qing, PAN Kang-hong, ZHANG Da-hai. EFFECT OF MEDIUM AND HIGH MOLECULAR WEIGHT POLYACRYLAMIDE ON PERFORMANCE OF SLUDGE ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 82-87. doi: 10.13205/j.hjgc.202205012

EFFECT OF MEDIUM AND HIGH MOLECULAR WEIGHT POLYACRYLAMIDE ON PERFORMANCE OF SLUDGE ANAEROBIC DIGESTION

doi: 10.13205/j.hjgc.202205012
  • Received Date: 2021-08-25
    Available Online: 2022-07-02
  • Dehydration and successive anaerobic digestion are widely used for the reduction and resource utilization of the excess sludge from municipal wastewater treatment plants. Cationic polyacrylamide(cPAM) is a commonly used flocculant in the dehydration process, and its influence on the performance of subsequent anaerobic digestion is still not well understood. This study found that cPAM with medium and high molecular weight could inhibit the solubilization and hydrolysis of organic matter, and the efficiency of the subsequent acidogenesis and methanogenesis during anaerobic digestion. In addition, the inhibition effect of medium molecular weight cPAM was stronger. Compared with the control, the maximum yields of soluble protein, polysaccharide, and short-chain fatty acids(SCFAs) decreased by 22.3%, 28.4% and 38.6%, respectively, for the digestion of sludge after the addition of medium molecular weight cPAM; while they declined by 7.4%, 19.4% and 25.9% respectively for high molecular weight cPAM. The 30-day cumulative methane production for sludge digestion with medium and high molecular weight cPAM were(40.4±1.4) mL CH4/g VSS and(49.8±1.3) mL CH4/g VSS, respectively, which were 33.7% and 18.3% lower than that of the control. The results suggested that the effect of cPAM, including the amount and molecular weight of cPAM, on the performance of subsequent anaerobic digestion should be integrated into consideration in the process of excess sludge dewatering to achieve the best overall benefit.
  • [1]
    戴晓虎.我国污泥处理处置现状及发展趋势[J].科学,2020,72(6):30-34.
    [2]
    APPELS L,BAEYENS J,DEGRÈVE J,et al.Principles and potential of the anaerobic digestion of waste-activated sludge[J].Progress in Energy and Combustion Science,2008,34(6):755-781.
    [3]
    熊焕嘉,刘峙嵘.絮凝剂的开发及其应用进展[J].油气田环境保护,2011,21(2):30-33.
    [4]
    施正华,李秀芬,宋小莉,等.采用阳离子聚丙烯酰胺改善污泥水解液的脱水性能[J].2017,11(10):5615-5620.
    [5]
    CHU C P,LEE D J,CHANG BEA-VEN,et al. "Weak" ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids[J].Water Research,2002,36(11):2681-2688.
    [6]
    何旭,俞志敏,卫新来.聚丙烯酰胺对生活污泥脱水的实验研究[J].环境科学导刊,2015,34(1):61-66.
    [7]
    WANG D B,LIU X R,ZENG G M,et al.Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge[J].Water Research,2018,130(Mar.1):281-290.
    [8]
    刘建平,王雪芳,杨小敏.高分子量聚丙烯酰胺的合成与应用进展[J].化学工程师,2010(8):26-28.
    [9]
    FEDERATION W E,APH A.Standard methods for the examination of water and wastewater[J].American Public Health Association:Washington,DC,USA,2005.
    [10]
    LIU H B,WANG Y Y,WANG L,et al.Stepwise hydrolysis to improve carbon releasing efficiency from sludge[J].Water Research,2017,119:225-233.
    [11]
    ZHAO J W,WANG D B,LI X M,et al.Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge[J].Water Research,2015,78:111-120.
    [12]
    ELEFSINIOTIS P,OLDHAM W.Effect of HRT on acidogenic digestion of primary sludge[J].Journal of Environmental Engineering,1994,120(3):645-660.
    [13]
    LIU Y D,ZHU Y D,JIA H H,et al.Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw[J].Bioresource Technology,2017,244(Pt 1):445-451.
    [14]
    YUAN Y Y,HU X Y,CHEN H B,et al.Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge[J].Science of the Total Environment,2019,694:133741.
    [15]
    卢怡清,许颖,董滨,等.去除城市生活污泥中有机络合态金属强化其厌氧生物制气[J].环境科学,2018,39(1):284-291.
    [16]
    LU K X,PING Q,LI Y M.Understanding the abiotic interaction between phosphate and macromolecular organic compounds in waste activated sludge during anaerobic treatment[J].Science of the Total Environment,2021,782:146864.
    [17]
    BASUVARAJ M,FEIN J,LISS S N.Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc[J].Water Research,2015,82:104-117.
    [18]
    LIANG J L,LUO L W,LI D Y,et al.Promoting anaerobic co-digestion of sewage sludge and food waste with different types of conductive materials:performance,stability,and underlying mechanism[J].Bioresource Technology,2021,337:125384.
    [19]
    GIANFREDA L,RAO M A.Potential of extra cellular enzymes in remediation of polluted soils:a review[J].Enzyme and Microbial Technology,2004,35(4):339-354.
    [20]
    LUO Y L,YANG Z H,XU Z Y,et al.Effect of trace amounts of polyacrylamide (PAM) on long-term performance of activated sludge[J].Journal of Hazardous Materials,2011,189(1/2):69-75.
    [21]
    CHU C P,LEE D J,CHANG B V,et al.Anaerobic digestion of polyelectrolyte flocculated waste activated sludge[J].Chemosphere,2003,53(7):757-764.
    [22]
    XIONG B Y,LOSS R D,SHIELDS D,et al.Polyacrylamide degradation and its implications in environmental systems[J].npj Clean Water,2018,1(1):17-19.
    [23]
    DAI X H,LUO F,YI J,et al.Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system[J].Bioresource Technology,2014,153:55-61.
    [24]
    DAI X H,XU Y,DONG B.Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge[J].Water Research,2017,115:220-228.
    [25]
    GUO H X,WANG Y F,TIAN L X,et al.Insight into the enhancing short-chain fatty acids (SCFAs) production from waste activated sludge via polyoxometalates pretreatment:mechanisms and implications[J].Science of the Total Environment,2021,800:149392.
    [26]
    PANG H L,LI L L,HE J G,et al.New insight into enhanced production of short-chain fatty acids from waste activated sludge by cation exchange resin-induced hydrolysis[J].Chemical Engineering Journal,2020,388:124235.
    [27]
    LIU X R,XU Q X,WANG D B,et al.Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge[J].Water Research,2019,155:142-151.
    [28]
    WU Y Q,SONG K.Effect of thermal activated peroxydisulfate pretreatment on short-chain fatty acids production from waste activated sludge anaerobic fermentation[J].Bioresource Technology,2019,292:121977.
    [29]
    ZHAO J W,GUI L,WANG Q L,et al.Aged refuse enhances anaerobic digestion of waste activated sludge[J].Water Research,2017,123:724-733.
    [30]
    KHADEM A F,AZMAN S,PLUGGE C M,et al.Effect of humic acids on the activity of pure and mixed methanogenic cultures[J].Biomass and Bioenergy,2017,99:21-30.
  • Relative Articles

    [1]SHANG Min, JIA Yangjiacuo, LIU Hongtao, LIU Yi, YUAN Bo, CHEN Ying, LIU Min. QUANTITATIVE STUDY ON THE EVOLUTION CHARACTERISTICS AND DRIVING FACTORS OF GRASSLAND DESERTIFICATION IN RUOERGAI COUNTY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 43-51. doi: 10.13205/j.hjgc.202412006
    [2]ZHANG Lei, LI Xuemei, WEI Yuan, FENG Chenglian, SU Hailei, LIU Yuxian, ZHAO Yanan, LI Feilong, GUO Fen, ZHANG Yuan, XUE Jingchuan. ENVIRONMENTAL OCCURRENCE AND ECOLOGICAL RISK ASSESSMENT OF PARABENS AND METABOLITES IN THE DONGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 91-99. doi: 10.13205/j.hjgc.202404011
    [3]GAO Yahong, LIN Bingquan, ZHAO Chen, LIU Yuxuan, AN Xinqi, ZHONG Yin, HU Qian, WANG Zhenbei, QIU Bin, QI Fei, SUN Dezhi. THE CHARACTERISTICS OF INITIAL RAINWATER POLLUTION AND INTERCEPTION AND STORAGE IN HILLY TOWNS IN THE YANGTZE RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 191-200. doi: 10.13205/j.hjgc.202409018
    [4]LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024
    [5]GUO Yake, GAO Yanyan, QIAN Hui, TANG Shunqi, WANG Haike, SHI Xiaoxin. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN THE CHU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 112-119. doi: 10.13205/j.hjgc.202301014
    [6]WU Ya'nan, REN Xinxin, GAO Yuzhi, WANG Weidong, LI Kejia. SHENZHEN'S PRACTICE OF POLLUTION PREVENTION AND CONTROL OF RAINFALL OVERFLOW BASED ON WATER ENVIRONMENT GOVERNANCE IN SMALL WATERSHED[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 99-106. doi: 10.13205/j.hjgc.202312012
    [7]YUAN Lei, YANG Zanxian, LONG Haixiao, CHEN Guoping, LI Qiangjun, WU Xiaowei. ANALYSIS OF SPATIOTEMPORAL EVOLUTION OF WATER RESOURCES CARRYING CAPACITY IN KUNMING BASED ON ENTROPY WEIGHT METHOD AND MARKOV MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 202-209. doi: 10.13205/j.hjgc.202306027
    [8]DU Ying'en, HOU Jingming, CHAI Jie, BAI Guangbi, LI Xuan, ZHANG Hongfang, ZHANG Zhaoan, CHEN Guangzhao, LI Bingyao. TEMPORAL VARIATION CHARACTERISTICS OF PRECIPITATION EXTREMES IN XI'AN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 41-46. doi: 10.13205/j.hjgc.202211006
    [9]LI Aimin, MU Yunsong. Zhibo Interview with Scientists: Research on Wastewater Toxicity Control Technology of Typical Chemical Parks in the Yangtze River Basin[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 254-255.
    [10]CHENG Hongsheng, DING Jingtao, MENG Haibo, SHEN Yujun, ZHOU Haibin, SONG Liqiu, ZHANG Xi, XU Pengxiang, ZHANG Pengyue, WANG Xinyu, LI Ran, WANG Juan, ZHANG Ying, YAN Haipeng. ANALYSIS ON WHOLE CHAIN TECHNOLOGY OF LIVESTOCK MANURE RESOURCE UTILIZATION IN THE YANGTZE RIVER BASIN PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 240-247. doi: DOI:10.13205/j.hjgc.202207033
    [11]WANG Xin-wen, LIU Zi-qi, GUO Qiong-qiong, LI Yuan, LI Kai-ping, ZHANG Chen-yue. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND POLLUTION SOURCE EVALUATION OF WATER QUALITY IN THE HUANGZHOUHE RIVER BASIN, GUIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 69-75. doi: 10.13205/j.hjgc.202109011
    [12]LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028
    [17]Cheng Nianliang, Li Yunting, Zhang Dawei, Sun Ruiwen, Dong Xin, Cheng Bingfen, Li Hongxia. ANALYSIS ON THE SPATIAL AND TEMPORAL DISTRIBUTION OF PM2. 5 IN BEIJING IN 2013[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 43-46. doi: 10.13205/j.hjgc.201510010
    [18]Xu Xin Cui Xiaoai, . STUDY ON SPATIOTEMPORAL EVOLUTION OF ENVIRONMENTAL EFFICIENCY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 127-131. doi: 10.13205/j.hjgc.201508029
  • Cited by

    Periodical cited type(8)

    1. 余锦涛,孙天宇,戴毅. 水力压裂结合化学氧化法修复多环芳烃污染的低渗土壤. 环境污染与防治. 2024(02): 174-180 .
    2. 邱志浩. 企业土壤环境风险管理水平分级评价方法研究. 环境科学导刊. 2024(04): 92-96 .
    3. 李俊,胡健,马文敏,王鹏,郑厚义,卢然. 石油污染土壤修复技术研究进展. 生态学杂志. 2024(08): 2502-2512 .
    4. 丁森旭,冉宗信,孙晓霜,彭云霄,余江. 修复多环芳烃污染地块的土壤氧化剂需求量. 深圳大学学报(理工版). 2023(01): 48-55 .
    5. 杨玉敏,孙明波,张博宇. 石油烃污染场地气相抽提-微生物降解耦合修复研究. 炼油技术与工程. 2023(12): 59-64 .
    6. 施维林,罗王捷. 有机物污染土壤修复技术研究与应用进展. 苏州科技大学学报(自然科学版). 2022(02): 1-8 .
    7. 谢宜,史学峰,李昌武,张海隆,田宝虎. 化学氧化联合微生物修复石油烃污染土壤. 湖南有色金属. 2022(03): 60-62+80 .
    8. 黄旋,郭宝蔓,顾爱良,张云,田恬,曾跃春. 污染场地水平修复井技术的研究进展及应用实践. 环境工程. 2022(09): 262-269 . 本站查看

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.9 %FULLTEXT: 11.9 %META: 85.5 %META: 85.5 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.6 %其他: 12.6 %上海: 2.2 %上海: 2.2 %东莞: 1.3 %东莞: 1.3 %临汾: 0.3 %临汾: 0.3 %伦敦: 0.3 %伦敦: 0.3 %内江: 0.6 %内江: 0.6 %北京: 8.5 %北京: 8.5 %南京: 6.6 %南京: 6.6 %南宁: 0.6 %南宁: 0.6 %合肥: 0.3 %合肥: 0.3 %嘉兴: 1.6 %嘉兴: 1.6 %大兴安岭: 0.3 %大兴安岭: 0.3 %宁德: 1.3 %宁德: 1.3 %宁波: 0.9 %宁波: 0.9 %安康: 0.6 %安康: 0.6 %宜昌: 1.6 %宜昌: 1.6 %宜春: 0.3 %宜春: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.6 %常德: 0.6 %广安: 1.3 %广安: 1.3 %广州: 0.9 %广州: 0.9 %开封: 0.3 %开封: 0.3 %张家口: 0.6 %张家口: 0.6 %成都: 0.9 %成都: 0.9 %扬州: 1.6 %扬州: 1.6 %昆明: 2.8 %昆明: 2.8 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.3 %杭州: 1.3 %武汉: 6.0 %武汉: 6.0 %沈阳: 0.6 %沈阳: 0.6 %沙田: 0.3 %沙田: 0.3 %泰安: 0.3 %泰安: 0.3 %济南: 0.3 %济南: 0.3 %济源: 0.6 %济源: 0.6 %海口: 0.3 %海口: 0.3 %淮南: 0.3 %淮南: 0.3 %深圳: 0.3 %深圳: 0.3 %漯河: 1.3 %漯河: 1.3 %福州: 0.6 %福州: 0.6 %纽约: 1.3 %纽约: 1.3 %芒廷维尤: 18.2 %芒廷维尤: 18.2 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 0.6 %芝加哥: 0.6 %西宁: 7.5 %西宁: 7.5 %达州: 0.9 %达州: 0.9 %运城: 3.8 %运城: 3.8 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 1.3 %郑州: 1.3 %鄂州: 0.3 %鄂州: 0.3 %重庆: 0.3 %重庆: 0.3 %青岛: 0.9 %青岛: 0.9 %香港: 0.3 %香港: 0.3 %马鞍山: 0.3 %马鞍山: 0.3 %其他上海东莞临汾伦敦内江北京南京南宁合肥嘉兴大兴安岭宁德宁波安康宜昌宜春常州常德广安广州开封张家口成都扬州昆明晋城朝阳杭州武汉沈阳沙田泰安济南济源海口淮南深圳漯河福州纽约芒廷维尤芜湖芝加哥西宁达州运城遵义邯郸郑州鄂州重庆青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(12) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return