Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 40 Issue 5
Jul.  2022
Turn off MathJax
Article Contents
YANG Meng, JIANG Jian-guo, XU Yi-wen, LIU Nuo. EFFECT OF pH ON ANAEROBIC HYDROLYSIS ACIDIFICATION STAGE OF FRUIT AND VEGETABLE WASTES AND GARDEN WASTES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 103-108. doi: 10.13205/j.hjgc.202205015
Citation: YANG Meng, JIANG Jian-guo, XU Yi-wen, LIU Nuo. EFFECT OF pH ON ANAEROBIC HYDROLYSIS ACIDIFICATION STAGE OF FRUIT AND VEGETABLE WASTES AND GARDEN WASTES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 103-108. doi: 10.13205/j.hjgc.202205015

EFFECT OF pH ON ANAEROBIC HYDROLYSIS ACIDIFICATION STAGE OF FRUIT AND VEGETABLE WASTES AND GARDEN WASTES

doi: 10.13205/j.hjgc.202205015
  • Received Date: 2021-05-20
    Available Online: 2022-07-02
  • In this study, fruit and vegetable wastes and garden wastes were treated with anaerobic hydrolysis technology, and the effect of pH on acid production was also discussed. At temperature of 45℃, pH=6, the volatile fatty acid(VFA) concentration of the fermentation liquor in the reactor reached the maximum value of 12.94 g/L on the 11 th day, which was 3.37 times the VFA concentration under the unregulated pH condition, and the time needed to reach the VFA maximum value was reduced by 20%, greatly improving the acid production efficiency. Regulation of pH could also promote the conversion of soluble COD(SCOD) into VFAs. The maximum VFA/SCOD value was achieved on the 11 th day under the condition of pH 6, was 48.73%, which was beneficial to subsequent utilization as a carbon source. By further analyzing the VFA component and ammonia nitrogen concentration in the fermentation liquor with different pH, the condition of pH=6 could change the fermentation type from ethanol type fermentation to butyric acid type fermentation, which was also beneficial to protein decomposition.
  • loading
  • [1]
    骆晓松,蓝宁阁,冯磊,等.城市生物有机垃圾中高温厌氧消化实验研究[J].沈阳航空工业学院学报,2007(5):87-89.
    [2]
    刘广民,董永亮,薛建良,等.果蔬废弃物厌氧消化特征及固体减量研究[J].环境科学与技术,2009(3):27-30.
    [3]
    PAVI S,KRAMER L E,et al.Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste[J].Bioresour.Technol,2017,228:362-367.
    [4]
    宋庆彬.厨余与污泥联合厌氧发酵制氢研宄[D].大连:大连理工大学,2008.
    [5]
    住房和城乡建设部.2016年城乡建设统计公报[J].城乡建设,2017(17):38-43.
    [6]
    孙雨清,何晟,张昊巍,等.秋季果蔬类废弃物产VFAs效果及应用研究[J].环境科技,2017(5):23-26.
    [7]
    ZHANG L,LEE Y W,Jahng D.Anaerobic co-digestion of food waste and piggery wastewater:focusing on the role of trace elements[J].Bioresource Technology,2011,102:5048-5059.
    [8]
    CHENG H,HU Y.Municipal solid waste (MSW) as a renewable source of energy:current and future practices in China[J].Bioresource Technology,2010,101:3816-3824.
    [9]
    EL-FADEL,M,BOU-ZEID E,CHAHINE,et al.Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content[J].Waste Management,2002,22:269-282.
    [10]
    姜鑫.柑橘渣和园林垃圾对剩余污泥厌氧消化性能的影响研究[D].重庆:重庆大学,2017.
    [11]
    江志坚,朱保宁,袁海荣,等.温度与负荷对餐厨与果蔬垃圾混合厌氧消化酸化产物的影响[J].可再生能源,2014(1):81-86.
    [12]
    张仲玲.反硝化脱氮外加碳源的选择[D].哈尔滨:哈尔滨工业大学,2009.
    [13]
    LIM S J,AHN Y H,KIM E Y,et al.Nitrate Removal in a Packed Bed Reactor Using Volatile Fatty Acids from Anaerobic Acidogenesis of food wastes[J].Biotechnology and Bioprocess Engineering,2006,11(11):538-543.
    [14]
    SHRESTHA S,FONOLL X,KHANAL S K,et al.Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion:current status and future perspectives[J].Bioresource Technology,2017,245(Pt A).
    [15]
    刘敏茹,郭华芳,林镇荣.园林绿化废弃物联合餐厨垃圾好氧堆肥的"推流"工艺及应用研究[J].环境工程,2016(s1):743-746.
    [16]
    吕琛,袁海荣,王奎升,等.果蔬垃圾与餐厨垃圾混合厌氧消化产气性能[J].农业工程学报,2011(5):91-95.
    [17]
    李定龙,戴肖云,赵宋敏,等.pH对厨余垃圾厌氧发酵产酸的影响[J].环境科学与技术,2011(4):125-128.
    [18]
    张玉静,蒋建国,王佳明.pH值对餐厨垃圾厌氧产酸的影响[J].中国给水排水,2013(1):680-684.
    [19]
    郑明月,郑明霞,王凯军,等.温度、pH和负荷对果蔬垃圾厌氧酸化途径的影响[J].可再生能源,2012(4):75-79.
    [20]
    WANG Y,BING Z,GONG X,et al.Effects of pH buffering agents on the anaerobic hydrolysis acidification stage of kitchen waste[J].Waste Management,2017,68.
    [21]
    杨卫国,陈家军,张瑛华.pH值对有机废水厌氧产酸发酵影响研究[J].环境工程,2008(增刊1):136-138.
    [22]
    张波,史红钻,张丽丽,等.pH对厨余废物两相厌氧消化中水解和酸化过程的影响.环境科学学报,2005,25(5):665-669.
    [23]
    刘振玲,堵国成,刘和,等.食品废弃物厌氧消化产乙酸的研究[J].环境污染与防治,2007,29(1):49-52.
    [24]
    吕凡,何品晶,邵立明,等.pH值对易腐有机垃圾厌氧发酵产物分布的影响[J].环境科学,2006,27(5):991-997.
    [25]
    BABEL S,FUKUSHI K,SITANRASSAMEE B.Effect of acid speciation on solid waste liquefaction in the anaerobic acid digester[J].Water Research,2004,38(9):2417-2423.
    [26]
    孟光范,李岩,张晓东,等.渗滤工艺中蔬菜废弃物厌氧产酸过程研究[J].可再生能源,2016(9):1398-1402.
    [27]
    任南琪,秦智,李建政.不同产酸发酵菌群产氢能力的对比与分析[J].环境科学,2003,24(2):70-74.
    [28]
    王艳琴,张洁,刘月娥,等.初始pH值对餐厨垃圾高温高含固率厌氧发酵产酸的影响[J].桂林理工大学学报,2016,36(3).
    [29]
    袁雨珍,肖利平,刘传平,等.pH对餐厨垃圾厌氧发酵产氢过程的影响[J].生态环境学报,2017(4

    ).
    [30]
    JIANG J,ZHANG Y,LI K,et al.Volatile fatty acids production from food waste:effects of pH,temperature,and organic loading rate[J].Bioresour Technol,2013,143:525-530.
    [31]
    KHAN M A,NGO H H,GUO W S,et al.Optimization of process parameters for production of volatile fatty acid,biohydrogen and methane from anaerobic digestion[J].Bioresource Technology,2016,219:738-748.
    [32]
    吴云.餐厨垃圾厌氧消化影响因素及动力学研究[D].重庆:重庆大学,2009.
    [33]
    高永青,张晶宇,彭永臻,等.pH值对剩余污泥水解酸化溶出物的影响[J].北京工业大学学报,2011,37(1):139-145.
    [34]
    陈祥.餐厨垃圾两相厌氧发酵氨氮特性与控制方法研究[D].杭州:浙江大学,2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return