Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DING Ming-shan, LIU Jing-xuan, SUN Nan, YUAN Zhang-zhong, WANG Wei-dong, LI Xiao-dong, WANG Zhi-jian. BIOAUGMENTATION REMEDIATION OF AGEING OIL-CONTAMINATED SOIL IN DECOMMISSIONED WELL FIELD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 159-165. doi: 10.13205/j.hjgc.202205023
Citation: DING Ming-shan, LIU Jing-xuan, SUN Nan, YUAN Zhang-zhong, WANG Wei-dong, LI Xiao-dong, WANG Zhi-jian. BIOAUGMENTATION REMEDIATION OF AGEING OIL-CONTAMINATED SOIL IN DECOMMISSIONED WELL FIELD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 159-165. doi: 10.13205/j.hjgc.202205023

BIOAUGMENTATION REMEDIATION OF AGEING OIL-CONTAMINATED SOIL IN DECOMMISSIONED WELL FIELD

doi: 10.13205/j.hjgc.202205023
  • Received Date: 2021-08-16
    Available Online: 2022-07-02
  • Oil contaminated soils from the decommissioned well site were with low oil content with an increasing heavy fraction over time. Therefore, bioaugmentation was performed to restore the original properties of the aging contaminated soil. The physicochemical properties and indigenous microbial communities of the contaminated soil from a decommissioned well site were systematically analyzed. Various hydrocarbon degrading strains and bio-emulsifiers were screened to promote a high degradation value. Moreover, the preparation method of immobilized strains was optimized to enhance the environmental resistance. It was found that the oil content of the contaminated soils was up to 14.6 mg/g with 57% of heavy component. There was a lack of heavy oil degrading microorganisms in the soils. Two functional degrading strains with synergistic effects were screened and immobilized to improve the efficiency of hydrocarbon degradation. With the addition of 500 mg/L F-3 bio-emulsifier, the degradation time of meeting the standard was reduced from 120 d to 80 d. Thereafter, a 2700 m2 field test was carried out with the land farming method. After 8 months, the oil content was reduced from 14.6 mg/g to 3.30 mg/g, meeting the requirements of state environmental standards, GB 36600-2018. The screened strains were capable of increasing the degradation rate of the aging oil contaminated soils, where the optimized emulsifier and adding method were in favor of reducing the remediation period.
  • [1]
    BALBA M T,AL-AWADHI N,AL-DAHER R.Bioremediation of oil-contaminated soil:microbiological methods for feasibility assessment and field evaluation[J].Journal of Microbiological Methods,1998,32(2):155-164.
    [2]
    张强,傅晓文,季蕾,等.生态堆技术修复老化油泥污染土壤[J].环境工程学报,2017,11(11):6142-6146.
    [3]
    GONG X B.Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified Fenton oxidation[J].International Biodeterioration& Biodegradation,2012,70:89-95.
    [4]
    赵晓非,张晓阳,刘立新,等.新型油泥处理技术展望[J].化工进展,2016,35(增刊1):276-280.
    [5]
    高梦雯.高浓度有机污染土壤处理技术研究进展[J].环境与发展,2019,31(3):41-42.
    [6]
    BOOPATHY R.Factors limiting bioremediation technologies[J].Bioresource Technology,2000,74(1):63-67.
    [7]
    SHARMA I.Bioremediation Techniques for Polluted Environment:Concept,Advantages,Limitations,and Prospects[M].Trace Metals in the Environment-New Approaches and Recent Advances,Intecopen,2021,2:2-5.
    [8]
    董丁,卢彦珍,唐美华,等.一株石油烃高效降解菌的筛选及降解性能研究[J].南京工业大学学报(自然科学版),2017,39(3):6.
    [9]
    FATIMA M B,FLÁVIO A C,BENEDICT C O,et al.Comparative bioremediation of soils contaminated with diesel oil by natural attenuation,biostimulation and bioaugmentation[J].Bioresource Technology,2005,96(9):1049-1055.
    [10]
    张宝良,王宝辉,田禹,等.油污土壤生物修复高效菌筛选鉴定[J].哈尔滨工业大学学报,2006,38(12):2180-2184.
    [11]
    UENO A,HASANUZZAMAN M,YUMOTO I,et al.Verification of degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain watg in soil microcosms[J].Current Microbiology,2006,52(3):182-185.
    [12]
    BANET G,TURAANI A K,FARBER R,et al.The effects of biostimulation and bioaugmentation on crude oil biodegradation in two adjacent terrestrial oil spills of different age,in a hyper-arid region[J].Journal of Environmental Management,2021,286(3/4):112248.
    [13]
    VARJAIVI S,UPASANI V N.Bioaugmentation of Pseudomonas aeruginosa NCIM 5514-A novel oily waste degrader for treatment of petroleum hydrocarbons[J].Bioresource Technology,2020,319:124240.
    [14]
    王丽萍,李丹,许锐伟,等.专性菌系对石油烃污染土壤的修复性能[J].中国环境科学,2018,38(4):1417-1423.
    [15]
    李斌,张随望,黎成,等.安塞油田含油污泥井场微生物降解处理技术研究[J].石油天然气学报,2009,31(3):354-356.
    [16]
    代小丽,王硕,李佳斌,等.石油污染土壤原位生物修复强化技术研究进展[J].环境工程技术学报,2020,10(3):456-466.
    [17]
    蔡萍萍,宁卓,何泽,等.采油井场土壤微生物群落结构分布[J].环境科学,2018,39(7):3329-3338.
    [18]
    DING M S,JIA W H,LV Z F,et al.Improving bitumen recovery from poor processing oil sands using microbial pretreatment[J].Energy& Fuels,2014,28(11):7712-7720.
    [19]
    胡婧,束青林,孙刚正,等.油藏内源微生物演替规律及其对驱油效果的影响[J].中国石油大学学报(自然科学版),2019,43(1):108-114.
    [20]
    慕庆峰,于立红,张涛,等.油污土壤修复微生物的筛选及其影响因素[J].水土保持通报,2018,38(5):330-346.
    [21]
    MOSLEM A,MEHDI H,AKRAMSADAT E.Degradation of phenol at high concentrations using immobilization Pseudomonas putida P53 into sawdust entrapped into sodium-alginate beads[J].Water Science& Technology,2019,79(7):1387-1396.
    [22]
    孙万虹,陈丽华,徐红伟.氮磷含量对微生物修复油污土壤的影响[J].生物技术通报,2015,31(6):157-164.
    [23]
    VIDALI M.Bioremediation.An overview[J].Pure& Applied Chemistry,2001,73(7):1163-1172.
    [24]
    MINAI-TEHRANI D,ROHANIFAR P,AZAMI S.Assessment of bioremediation of aliphatic,aromatic,resin,and asphaltene fractions of oil-sludge-contaminated soil[J].International Journal of Environmental Science& Technology,2015,12(4):1253-1260.
    [25]
    SIMONE C,RENATA D,MARIA G,et al.Predominant growth of Alcanivorax during experiments on "oil spill bioremediation" in mesocosms[J].Microbiological Research,2007,162(2):185-190.
    [26]
    SARBASHIS,DAS B M,FREDRIK P,et al.Characterization of three mycobacteriumspp.with potential use in bioremediation by genome sequencing and comparative genomics[J].Genome Biology& Evolution,2015,7(7):1870-1885.
    [27]
    YUMIKO K,LIES I S,ATSUKO U,et al.Thalassospira tepidiphila sp.nov.,a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater[J].International Journal of Systematic& Evolutionary Microbiology,2008,58(3):711-715.
    [28]
    李晓楼.石油污染对土壤微生物群落多样性的影响[J].生物工程学报,2017,33(6):968-975.
    [29]
    ELLEN C S,THEREZA C VP,RICARDO P O.Biosurfactant-enhanced hydrocarbon bioremediation:an overview[J].International Biodeterioration& Biodegradation,2014,89(2):88-94.
    [30]
    张秀霞,耿春香,房苗苗,等.固定化微生物应用于生物修复石油污染土壤[J].石油学报(石油加工),2008,24(4):409-414.
    [31]
    王京秀,张志勇,孙珊珊,等.植物-固体菌剂联合修复石油污染土壤的基础研究[J].环境工程学报,2016,10(11):6732-6738.
  • Relative Articles

    [1]WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009
    [2]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [3]NIU Jianmin, ZANG Chong, WANG Zhenghua, ZHOU Min, PAN Wenjie, LI Hongyan. ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 107-113. doi: 10.13205/j.hjgc.202405014
    [4]WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009
    [5]MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014
    [6]LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041
    [7]CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006
    [8]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [9]DING Yi, YIN Jian, JIANG Hongtao, XIA Ruici, WEI Danqi, LUO Xinyuan. SYSTEM DYNAMICS PREDICTION OF CARBON PEAKING IN PEARL RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 22-29. doi: 10.13205/j.hjgc.202307004
    [10]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [11]CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032
    [12]WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017
    [13]WANG Mu, SONG Junjie, XIE Ronghuan, LI Weiping, LIU Guijian. EXPERIMENTAL STUDY OF H2O2 OXIDATION COUPLED WITH CHEMICAL WASHING TO REMEDY CHROMIUM-CONTAMINATED CLAYED SOIL FROM AN ELECTROPLATE FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 125-130. doi: 10.13205/j.hjgc.202208017
    [14]ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020
    [15]DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004
    [16]LIU Hui, CAI Bo-feng, ZHANG Li, WANG Zhen, CHEN Yang, XIA Chu-yu, YANG Lu, DONG Jin-chi, SONG Xiao-hui. RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 8-14. doi: 10.13205/j.hjgc.202110002
    [17]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [18]CUI Xiu-zhen, XU Shao-dong, GAO Han-bo, WANG Jun-xia, CAI Bo-feng. REFERENCE OF URBAN AIR POLLUTANTS EMISSION PATH FOR CARBON EMISSION PEAKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 39-43. doi: 10.13205/j.hjgc.202011007
    [19]YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008
    [20]Luo Chengcheng Zhang Huanzhen Bi Lusha Zhu Hong, . PROGRESS ON REHABILITATING OIL CONTAMINATED SOIL BY SVE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 158-162. doi: 10.13205/j.hjgc.201510035
  • Cited by

    Periodical cited type(14)

    1. 吴泉泉,孙泽文,钟乙琪,吴庆,林子捷,高康泰,李建龙,黄虹,马志飞,吴代赦. 异形除尘滤芯对撞脉冲喷吹清灰性能研究. 环境工程. 2024(03): 108-114 . 本站查看
    2. 郑清月,尹茜茜,刘东,林龙沅. 上部开口诱导引流装置对卧式长滤筒清灰性能的影响. 环境工程学报. 2023(02): 580-588 .
    3. 唐巾洁,王璐琰,杨晓光,鄢恒飞,程怀玉,龙新平. 滤筒形状对脉冲清灰过程影响的数值模拟研究. 武汉大学学报(工学版). 2023(06): 733-740 .
    4. 孟冬,许学瑞,赵颖,解洪波,王飞,李建龙. 基于扩散器与文氏管的除尘滤筒脉冲喷吹清灰性能改进. 煤矿安全. 2023(06): 54-59 .
    5. 杨光辉,周美伊柏,林涛,黄琬岚,谢智宇,林龙沅,陈海焱. 圆周式脉冲喷吹对滤筒清灰均匀性的影响. 中国粉体技术. 2023(06): 125-133 .
    6. 苏正通,林子捷,李建龙,邱俊,吴泉泉,吴代赦. 文丘里喷嘴改进金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2022(01): 220-229 .
    7. 刘佳莹,任玲,林小嘉,郑清月,宋戊春,林龙沅. 脉冲清灰喷吹气流偏斜的优化研究. 中国安全生产科学技术. 2022(01): 195-200 .
    8. 薛峰,李朋,黄琬岚,胡敏,颜翠平,陈海焱,杨刚. 喷嘴型式对滤筒脉冲定阻清灰效果的影响. 中国粉体技术. 2022(05): 48-56 .
    9. 郗元,姜文文,代岩,王国际,闫志刚,任福良,牛凤娟. 基于CFD的锥形散射器强化清灰特性数值模拟及优化. 轻工机械. 2021(01): 98-103 .
    10. 陈强,林子捷,李建龙,吴代赦,邱俊. 扩散喷嘴改善金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2021(05): 1634-1644 .
    11. 王素洁,刘东,余洪浪,张情,胥海伦. 基于散射结构的脉冲流场与清灰压力动态特性分析. 环境工程. 2021(05): 89-95 . 本站查看
    12. 邱俊,林子捷,李建龙,吴泉泉,吴代赦. 滤筒脉喷清灰过程中尘饼剥离对喷吹性能的影响. 环境工程. 2021(08): 113-118 . 本站查看
    13. 艾子昂,吴泉泉,孙燕,苏正通,李建龙,吴代赦. 气流隔板改善滤筒脉喷清灰性能的数值模拟. 南昌大学学报(工科版). 2021(04): 384-391 .
    14. 司凯凯,陈运法,刘庆祝,熊瑞,孙广超,刘开琪. 陶瓷膜过滤器内流场及热致损毁机理模拟分析. 过程工程学报. 2020(11): 1329-1335 .

    Other cited types(20)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.7 %FULLTEXT: 9.7 %META: 83.1 %META: 83.1 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.6 %其他: 14.6 %其他: 1.0 %其他: 1.0 %上海: 2.3 %上海: 2.3 %东京都: 0.2 %东京都: 0.2 %东营: 0.2 %东营: 0.2 %中山: 0.2 %中山: 0.2 %临汾: 0.2 %临汾: 0.2 %北京: 6.8 %北京: 6.8 %南京: 5.6 %南京: 5.6 %南昌: 0.7 %南昌: 0.7 %台北: 1.4 %台北: 1.4 %台州: 0.5 %台州: 0.5 %合肥: 1.2 %合肥: 1.2 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %太原: 0.2 %太原: 0.2 %威海: 0.2 %威海: 0.2 %宜昌: 0.5 %宜昌: 0.5 %宿州: 0.2 %宿州: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.3 %常德: 0.3 %广安: 0.2 %广安: 0.2 %广州: 3.0 %广州: 3.0 %廊坊: 0.2 %廊坊: 0.2 %张家口: 1.9 %张家口: 1.9 %惠州: 0.2 %惠州: 0.2 %成都: 0.9 %成都: 0.9 %扬州: 0.2 %扬州: 0.2 %无锡: 0.3 %无锡: 0.3 %昆明: 0.9 %昆明: 0.9 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 3.3 %杭州: 3.3 %榆林: 0.2 %榆林: 0.2 %武威: 0.2 %武威: 0.2 %武汉: 1.7 %武汉: 1.7 %比勒费尔德: 0.2 %比勒费尔德: 0.2 %济南: 1.4 %济南: 1.4 %济源: 0.2 %济源: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.7 %深圳: 0.7 %温州: 0.3 %温州: 0.3 %湖州: 0.9 %湖州: 0.9 %湛江: 0.2 %湛江: 0.2 %漯河: 0.3 %漯河: 0.3 %漳州: 0.5 %漳州: 0.5 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %舟山: 0.2 %舟山: 0.2 %芒廷维尤: 30.1 %芒廷维尤: 30.1 %芝加哥: 1.0 %芝加哥: 1.0 %衢州: 0.3 %衢州: 0.3 %西宁: 4.2 %西宁: 4.2 %贵阳: 0.5 %贵阳: 0.5 %运城: 2.1 %运城: 2.1 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.7 %郑州: 1.7 %重庆: 0.2 %重庆: 0.2 %铜陵: 0.2 %铜陵: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.2 %长治: 0.2 %青岛: 1.2 %青岛: 1.2 %黄冈: 0.3 %黄冈: 0.3 %黄石: 0.5 %黄石: 0.5 %其他其他上海东京都东营中山临汾北京南京南昌台北台州合肥呼和浩特哈尔滨嘉兴太原威海宜昌宿州常州常德广安广州廊坊张家口惠州成都扬州无锡昆明晋城朝阳杭州榆林武威武汉比勒费尔德济南济源淄博深圳温州湖州湛江漯河漳州石家庄福州舟山芒廷维尤芝加哥衢州西宁贵阳运城遵义邯郸郑州重庆铜陵长沙长治青岛黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (196) PDF downloads(10) Cited by(34)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return