Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
Citation: SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027

RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA

doi: 10.13205/j.hjgc.202205027
  • Received Date: 2021-08-22
    Available Online: 2022-07-02
  • The large-scale construction activities and operation of urban metro consumes huge quantity of resources and energy, which has gradually become a major contribution to the environmental impact of the urban transportation sector. Taking Shenzhen as a case, this paper evaluated the resource and energy consumption intensities of metros' construction stage by using life cycle assessment(LCA) method. The global warming potential(GWP), measured by CO2 equivalent, was chosen as the impact indicator to build a carbon emission calculation model of metro's construction phase. Meanwhile, scenarios-based analysis was adopted to predict the emission reduction potentials. The results showed that the cumulative carbon emission caused by the construction of metro lines and stations in Shenzhen city reached approximately 27.3 million tons of CO2e by 2020, of which 72% from the stations' construction, and 28% from the tunnels construction. Specifically, the carbon emission intensities of shield tunnels and stations were approximately 13000 tons CO2 e/km and 371.2 tons CO2 e/100 m2, respectively. In addition, the carbon emission reduction rate of metros' construction reached 8.5% annually, or an accumulative amount of 5.08 million tons from 2021 to 2035, if green technologies adopted, such as the use of recycled concrete and recycled steel. And that can probably significantly alleviate the carbon emission of metros' construction.
  • [1]
    刘小明.城市交通与管理——中国城市交通科学发展之路[J].交通运输系统工程与信息,2010,10(6):11-21.
    [2]
    JIE L,van ZUYLEN H J.Road traffic in China[J].Procedia-Social and Behavioral Sciences,2014,111:107-116.
    [3]
    中国城市轨道协会.城市轨道交通2020年度统计和分析报告[EB/OL].https://www.camet.org.cn/tjxx/7647.2020-04

    -10.
    [4]
    深圳市地铁集团有限公司.深圳市地铁集团有限公司2019年年度报告[EB/OL].https://www.szmc.net/jituagaikuang/touzizheguanxi/niandubaogao/202006/81590.html.2020

    -06-30.
    [5]
    毛睿昌.基于LCA的城市交通基础设施环境影响分析研究[D].深圳:深圳大学,2017.
    [6]
    MAO R C,BAO Y,DUAN H B,et al.Global urban subway development,construction material stocks,and embodied carbon emissions[J].Humanities and Social Sciences Communications,2021,8:1-11.
    [7]
    GUAN B W,LIU X H,ZHANG T,et al.Energy consumption of subway stations in China:data and influencing factors[J].Sustainable Cities and Society,2018,43:451-461.
    [8]
    LI Y,HE Q,LUO X,et al.Calculation of life-cycle greenhouse gas emissions of urban rail transit systems:a case study of Shanghai Metro[J].Resources Conservation and Recycling,2016,128:451-457.
    [9]
    F DEL PERO,DELOGU M,PIERINI M,et al.Life Cycle Assessment of a heavy metro train[J].Journal of Cleaner Production,2015,87:787-799.
    [10]
    LIU M H,JIA S Y,LI P,et al.Predicting GHG emissions from subway lines in the planning stage on a city level[J].Journal of Cleaner Production,2020,259:120823.
    [11]
    SAXE S,MILLER E,GUTHRIE P.The net greenhouse gas impact of the Sheppard Subway Line[J].Transportation Research Part D:Transport and Environment,2017,51:261-275.
    [12]
    王幼松,黄旭辉,闫辉.地铁盾构区间物化阶段碳排放计量分析[J].土木工程与管理学报,2019,36(3):12-18

    ,47.
    [13]
    LIU M H,JIA S Y,HE X T.A quota-based GHG emissions quantification model for the construction of subway stations in China[J].Journal of Cleaner Production,2018,198:847-858.
    [14]
    KAEWUNRUEN S,PENG S,PHIL-EBOSIE O.Digital twin aided sustainability and vulnerability audit for subway stations[J].Sustainability,2020,12(19):7873.
    [15]
    郑伟.城市轨道交通列车运行等级节能研究[J].城市轨道交通研究,2018,21(10):114-117.
    [16]
    NING J J,ZHOU Y H,LONG F C,et al.A synergistic energy-efficient planning approach for urban rail transit operations[J].Energy,2018,151:854-863.
    [17]
    YANG X,LI X,NING B,et al.A survey on energy-efficient train operation for urban rail transit[J].IEEE Transactions on Intelligent Transportation Systems,2015,17(1):2-13.
    [18]
    GAO Z,YANG L.Energy-saving operation approaches for urban rail transit systems[J].Frontiers of Engineering Management,2019,6(2):139-151.
    [19]
    LIU M H,JIA S Y,LIU X.Evaluation of mitigation potential of GHG emissions from the construction of prefabricated subway station[J].Journal of Cleaner Production,2019,236:117700.
    [20]
    皮膺海.盾构隧道施工碳排放测评研究[D].南昌:南昌大学,2016.
    [21]
    郜新军.城市轨道交通系统碳排放评估及集成优化控制方法研究[D].北京:北京交通大学,2013.
    [22]
    ISO.14040:Environmental management-Life cycle assessment-Principles and framework[S].London:British Standards Institution,2006.
    [23]
    国家标准化管理委员会.环境管理生命周期评价原则与框架[S].北京:中国标准出版社,2008.
    [24]
    陈亮,刘玫,黄进.GB/T 24040-2008《环境管理生命周期评价原则与框架》国家标准解读[J].标准科学,2009(2):76-80.
    [25]
    沈永平,王国亚.IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J].冰川冻土,2013(5):10-18.
    [26]
    《建筑碳排放计算标准》(GB/T 51366-2019)[S].中国:中国建筑科学研究院,2019.
    [27]
    黄旭辉.地铁土建工程物化阶段碳排放计量与减排分析[D].广州:华南理工大学,2019.
    [28]
    俞海勇,曾杰,胡晓珍,等.基于LCA的化学建材生产碳排放量研究分析[J].化工新型材料,2015,43(2):218-221.
    [29]
    杨倩苗.建筑产品的全生命周期环境影响定量评价[D].天津:天津大学,2009.
    [30]
    吴佳洁.市政基础设施建设阶段碳排放计算方法及应用[D].南京:东南大学,2012.
    [31]
    国家统计局,国家发展和改革委员会.中国能源统计年鉴(2019)[M].北京:中国统计出版社,2019.
    [32]
    刘念雄,汪静,李嵘.中国城市住区CO2排放量计算方法[J].清华大学学报(自然科学版),2009(9):1-4.
    [33]
    朱嬿,陈莹.住宅建筑生命周期能耗及环境排放案例[J].清华大学学报(自然科学版),2010(3):330-334.
    [34]
    深圳市规划和国土资源委员会.深圳市轨道交通线网规划(2016-2035)[EB/OL].http://csgx.szhome.com/uploadfiles/regulations/pdf/2018/12/121541151697161.PDF.2017-11.
    [35]
    深圳市交通运输局.深圳市城市轨道交通第四期建设规划(2017-2022年)[EB/OL].http://jtys.sz.gov.cn/zwgk/xxgkml/ghjh/fzgh/content/post_4292853.html,2018-04-18.
    [36]
    中华人民共和国国家发展和改革委员会.关于调整深圳市城市轨道交通第四期建设规划方案的批复[EB/OL].https://www.ndrc.gov.cn/xxgk/zcfb/tz/202004/t20200410_1225513.html,2020-03-26.
    [37]
    肖建庄,黎骜,丁陶.再生混凝土生命周期CO2排放评价[J].东南大学学报(自然科学版),2016,46(5):1088-1092.
    [38]
    孙楠楠.运输及碳化对RAC生命周期碳排放的影响研究[D].杭州:浙江大学,2014.
    [39]
    汪振双,苏昊林.重复再生混凝土性能和环境影响研究[J].中国环境科学,2018,38(10):3801-3807.
    [40]
    薄文斐.再生绿色建材对环境影响的成本分析[D].青岛:山东科技大学,2019.
    [41]
    广东省住房和城乡建设厅.广东省"十三五"建筑节能与绿色建筑发展规划[EB/OL].http://zfcxjst.gd.gov.cn/jsgl/zcwj/content/post_1390707.html,2017-7-14.
    [42]
    深圳市住房和建设局.关于在政府投资工程中率先使用绿色再生建材产品的通知[EB/OL].zjj.sz.gov.cn/szszfhjsjwzgkml/szszfhjsjwzgkml/zcfgjzcjd/zcfg/jzjn/content/post_5606794.html,2011-10-10.
    [43]
    深圳市住房和建设局.关于公布我市建筑废弃物综合利用企业信息名录及再生建材产品适用工程部位目录的通知[EB/OL].zjj.sz.gov.cn/csml/bgs/xxgk/tzgg_1/content/post_3759695.html,2018-05-18.
  • Relative Articles

    [1]WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009
    [2]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [3]NIU Jianmin, ZANG Chong, WANG Zhenghua, ZHOU Min, PAN Wenjie, LI Hongyan. ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 107-113. doi: 10.13205/j.hjgc.202405014
    [4]WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009
    [5]MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014
    [6]LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041
    [7]CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006
    [8]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [9]DING Yi, YIN Jian, JIANG Hongtao, XIA Ruici, WEI Danqi, LUO Xinyuan. SYSTEM DYNAMICS PREDICTION OF CARBON PEAKING IN PEARL RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 22-29. doi: 10.13205/j.hjgc.202307004
    [10]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [11]CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032
    [12]WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017
    [13]WANG Mu, SONG Junjie, XIE Ronghuan, LI Weiping, LIU Guijian. EXPERIMENTAL STUDY OF H2O2 OXIDATION COUPLED WITH CHEMICAL WASHING TO REMEDY CHROMIUM-CONTAMINATED CLAYED SOIL FROM AN ELECTROPLATE FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 125-130. doi: 10.13205/j.hjgc.202208017
    [14]ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020
    [15]DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004
    [16]LIU Hui, CAI Bo-feng, ZHANG Li, WANG Zhen, CHEN Yang, XIA Chu-yu, YANG Lu, DONG Jin-chi, SONG Xiao-hui. RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 8-14. doi: 10.13205/j.hjgc.202110002
    [17]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [18]CUI Xiu-zhen, XU Shao-dong, GAO Han-bo, WANG Jun-xia, CAI Bo-feng. REFERENCE OF URBAN AIR POLLUTANTS EMISSION PATH FOR CARBON EMISSION PEAKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 39-43. doi: 10.13205/j.hjgc.202011007
    [19]YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008
    [20]Luo Chengcheng Zhang Huanzhen Bi Lusha Zhu Hong, . PROGRESS ON REHABILITATING OIL CONTAMINATED SOIL BY SVE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 158-162. doi: 10.13205/j.hjgc.201510035
  • Cited by

    Periodical cited type(14)

    1. 吴泉泉,孙泽文,钟乙琪,吴庆,林子捷,高康泰,李建龙,黄虹,马志飞,吴代赦. 异形除尘滤芯对撞脉冲喷吹清灰性能研究. 环境工程. 2024(03): 108-114 . 本站查看
    2. 郑清月,尹茜茜,刘东,林龙沅. 上部开口诱导引流装置对卧式长滤筒清灰性能的影响. 环境工程学报. 2023(02): 580-588 .
    3. 唐巾洁,王璐琰,杨晓光,鄢恒飞,程怀玉,龙新平. 滤筒形状对脉冲清灰过程影响的数值模拟研究. 武汉大学学报(工学版). 2023(06): 733-740 .
    4. 孟冬,许学瑞,赵颖,解洪波,王飞,李建龙. 基于扩散器与文氏管的除尘滤筒脉冲喷吹清灰性能改进. 煤矿安全. 2023(06): 54-59 .
    5. 杨光辉,周美伊柏,林涛,黄琬岚,谢智宇,林龙沅,陈海焱. 圆周式脉冲喷吹对滤筒清灰均匀性的影响. 中国粉体技术. 2023(06): 125-133 .
    6. 苏正通,林子捷,李建龙,邱俊,吴泉泉,吴代赦. 文丘里喷嘴改进金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2022(01): 220-229 .
    7. 刘佳莹,任玲,林小嘉,郑清月,宋戊春,林龙沅. 脉冲清灰喷吹气流偏斜的优化研究. 中国安全生产科学技术. 2022(01): 195-200 .
    8. 薛峰,李朋,黄琬岚,胡敏,颜翠平,陈海焱,杨刚. 喷嘴型式对滤筒脉冲定阻清灰效果的影响. 中国粉体技术. 2022(05): 48-56 .
    9. 郗元,姜文文,代岩,王国际,闫志刚,任福良,牛凤娟. 基于CFD的锥形散射器强化清灰特性数值模拟及优化. 轻工机械. 2021(01): 98-103 .
    10. 陈强,林子捷,李建龙,吴代赦,邱俊. 扩散喷嘴改善金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2021(05): 1634-1644 .
    11. 王素洁,刘东,余洪浪,张情,胥海伦. 基于散射结构的脉冲流场与清灰压力动态特性分析. 环境工程. 2021(05): 89-95 . 本站查看
    12. 邱俊,林子捷,李建龙,吴泉泉,吴代赦. 滤筒脉喷清灰过程中尘饼剥离对喷吹性能的影响. 环境工程. 2021(08): 113-118 . 本站查看
    13. 艾子昂,吴泉泉,孙燕,苏正通,李建龙,吴代赦. 气流隔板改善滤筒脉喷清灰性能的数值模拟. 南昌大学学报(工科版). 2021(04): 384-391 .
    14. 司凯凯,陈运法,刘庆祝,熊瑞,孙广超,刘开琪. 陶瓷膜过滤器内流场及热致损毁机理模拟分析. 过程工程学报. 2020(11): 1329-1335 .

    Other cited types(20)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.7 %FULLTEXT: 9.7 %META: 83.1 %META: 83.1 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.6 %其他: 14.6 %其他: 1.0 %其他: 1.0 %上海: 2.3 %上海: 2.3 %东京都: 0.2 %东京都: 0.2 %东营: 0.2 %东营: 0.2 %中山: 0.2 %中山: 0.2 %临汾: 0.2 %临汾: 0.2 %北京: 6.8 %北京: 6.8 %南京: 5.6 %南京: 5.6 %南昌: 0.7 %南昌: 0.7 %台北: 1.4 %台北: 1.4 %台州: 0.5 %台州: 0.5 %合肥: 1.2 %合肥: 1.2 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %太原: 0.2 %太原: 0.2 %威海: 0.2 %威海: 0.2 %宜昌: 0.5 %宜昌: 0.5 %宿州: 0.2 %宿州: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.3 %常德: 0.3 %广安: 0.2 %广安: 0.2 %广州: 3.0 %广州: 3.0 %廊坊: 0.2 %廊坊: 0.2 %张家口: 1.9 %张家口: 1.9 %惠州: 0.2 %惠州: 0.2 %成都: 0.9 %成都: 0.9 %扬州: 0.2 %扬州: 0.2 %无锡: 0.3 %无锡: 0.3 %昆明: 0.9 %昆明: 0.9 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 3.3 %杭州: 3.3 %榆林: 0.2 %榆林: 0.2 %武威: 0.2 %武威: 0.2 %武汉: 1.7 %武汉: 1.7 %比勒费尔德: 0.2 %比勒费尔德: 0.2 %济南: 1.4 %济南: 1.4 %济源: 0.2 %济源: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.7 %深圳: 0.7 %温州: 0.3 %温州: 0.3 %湖州: 0.9 %湖州: 0.9 %湛江: 0.2 %湛江: 0.2 %漯河: 0.3 %漯河: 0.3 %漳州: 0.5 %漳州: 0.5 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %舟山: 0.2 %舟山: 0.2 %芒廷维尤: 30.1 %芒廷维尤: 30.1 %芝加哥: 1.0 %芝加哥: 1.0 %衢州: 0.3 %衢州: 0.3 %西宁: 4.2 %西宁: 4.2 %贵阳: 0.5 %贵阳: 0.5 %运城: 2.1 %运城: 2.1 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.7 %郑州: 1.7 %重庆: 0.2 %重庆: 0.2 %铜陵: 0.2 %铜陵: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.2 %长治: 0.2 %青岛: 1.2 %青岛: 1.2 %黄冈: 0.3 %黄冈: 0.3 %黄石: 0.5 %黄石: 0.5 %其他其他上海东京都东营中山临汾北京南京南昌台北台州合肥呼和浩特哈尔滨嘉兴太原威海宜昌宿州常州常德广安广州廊坊张家口惠州成都扬州无锡昆明晋城朝阳杭州榆林武威武汉比勒费尔德济南济源淄博深圳温州湖州湛江漯河漳州石家庄福州舟山芒廷维尤芝加哥衢州西宁贵阳运城遵义邯郸郑州重庆铜陵长沙长治青岛黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (373) PDF downloads(8) Cited by(34)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return