Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
Citation: ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029

ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION

doi: 10.13205/j.hjgc.202205029
  • Received Date: 2021-06-09
    Available Online: 2022-07-02
  • Numerical simulation plays an important role in groundwater in-situ chemical remediation. Based on the physical and chemical reactions occurring in the remediation procedure, the relevant governing equations were analyzed, including soil equilibrium, continuity of fluid phases, and mass transport. Several common pieces of software for groundwater in-situ chemical remediation were introduced and compared. The effect of soil deformation on groundwater flow and mass transport was highlighted and the problems for current numerical simulation were discussed. Further development in numerical simulation of in-situ chemical remediation was proposed, including coupling among soil deformation, groundwater flow and mass transport, injection of remediation agents and resultant soil deformation and failure and change in permeability, as well as the effect of injection on soil mechanical properties.
  • [1]
    王磊,龙涛,张峰,等.用于土壤及地下水修复的多相抽提技术研究进展[J].生态与农村环境学报,2014,30(2):137-145.
    [2]
    郑艳梅,王战强,黄国强,等.地下水曝气法处理土壤及地下水中甲基叔丁基醚(MTBE)[J].农业环境科学学报,2004,23(6):1200-1202.
    [3]
    刘凯,张瑞环,王世杰.污染地块修复原位热脱附技术的研究及应用进展[J].中国氯碱,2017(12):31-37.
    [4]
    许增光.地下水有机物和重金属迁移与污染修复的数值模拟研究[D].上海:上海交通大学,2012.
    [5]
    赵勇胜.地下水污染场地的控制与修复[M].北京:科学出版社,2015.
    [6]
    金黄梅,高博,王博.油污染地下水原位生物修复试验研究[J].环境科学导刊,2010,29(1):53-56.
    [7]
    KROL M M,OLENIUK A J,KOCUR C M,et al.A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection[J].Environmental Science& Technology,2013,47:7332-7340.
    [8]
    KREMBS F J,SIEGRIST R L,CRIMI M L,et al.ISCO for groundwater remediation:analysis of field applications and performance[J].Ground Water Monitoring& Remediation,2010,30(4):42-53.
    [9]
    刘继东,胡佳晨,王欢,等.某焦化厂旧址氰化物污染地下水修复工程实例分析[J].环境保护科学,2019,45(4):121-126.
    [10]
    王棣,魏文侠,王琳玲,等.纳米铁原位注入技术对六价铬污染地下水的修复[J].环境工程学报,2018,12(2):521-526.
    [11]
    中关村中环地下水污染防控与修复产业联盟.污染地下水原位注入修复技术指南:T/GIA 002-2019[S].2019.
    [12]
    HEIDERSCHEIDT J L,CRIMI M,SIEGRIST R L,et al.Optimization of full-scale permanganate ISCO system operation:laboratory and numerical studies[J].Ground Water Monitoring& Remediation,2008,28(4):72-84.
    [13]
    BACIOCCHI R,D'APRILE L,INNOCENTI I,et al.Development of technical guidelines for the application of in-situ chemical oxidation to groundwater remediation[J].Journal of Cleaner Production,2014,77:47-55.
    [14]
    杨乐巍,张晓斌,李书鹏,等.土壤及地下水原位注入-高压旋喷注射修复技术工程应用案例分析[J].环境工程,2018,3(12):48-53.
    [15]
    SCHROTH M H,OOSTROM M,WIETSMA T W,et al.In-situ oxidation of trichloroethene by permanganate:effects on porous medium hydraulic properties[J].Journal of Contaminant Hydrology,2001,50:79-98.
    [16]
    LEWIS R W,SCHREFLER B A,RAHMAN N A.A finite element analysis of multiphase immiscible flow in deforming porous media for subsurface systems[J].Communications in Numerical Methods in Engineering,1998,14:135-149.
    [17]
    林銮,杨庆生.化学-力学耦合理论与数值方法[J].固体力学学报,2008,29(1):7-12.
    [18]
    殷宗泽.土工原理[M].北京:中国水利水电出版社,2007.
    [19]
    胡黎明,邢巍巍,吴照群.多孔介质中非水相流体运移的数值模拟[J].岩土力学,2007,28(5):951-955.
    [20]
    TSAKIROGLOU C D,SIKINIOTI-LOCK A,TERZI K,et al.A numerical model to simulate the NAPL source zone remediation by injecting zero-valent iron nanoparticles[J].Chemical Engineering Science,2018,192:391-413.
    [21]
    SLEEP B E,SYKES J F.Compositional simulation of groundwater contamination by organic compounds Ⅰ.model development and verification[J].Water Resources Research,1993,29(6):1697-1708.
    [22]
    HE L,HUANG G H,LU H W.A coupled simulation-optimization approach for groundwater remediation design under uncertainty:An application to a petroleum-contaminated site[J].Environmental Pollution,2009,157:2485-2492.
    [23]
    WEST M R,GRANT G P,GERHARD J I,et al.The influence of precipitate on the chemical oxidation of TCE DNAPL with potassium permanganate[J].Advances in Water Resources,2008,31:324-338.
    [24]
    CLEMENT T P,SUN Y,HOOKER B S,et al.Modeling multispecies reactive transport in ground water[J].Ground Water Monitoring& Remediation,1998,30(4):79-92.
    [25]
    SMITH D W.One-dimensional contaminant transport through a deforming porous medium:theory and a solution for a quasi-steady-state problem[J].International Journal for Numerical and Analytical Methods in Geomechanics,2000,24:693-722.
    [26]
    张志红,师玉敏,朱敏.黏土垫层水力-力学-化学耦合模型研究[J].岩土工程学报,2016,38(7):1283-1290.
    [27]
    CAREGHINI A,SAPONARO S,SEZENNA E,et al.Lab-scale tests and numerical simulations for in situ treatment of polluted groundwater[J].Journal of Hazardous Materials,2015,287:162-170.
    [28]
    CHA K Y,BORDEN R C.Impact of injection system design on ISCO performance with permanganate-mathematical modeling results[J].Journal of Contaminant Hydrology,2012,128:33-46.
    [29]
    陈华清,李义连.地下水苯系物污染原位曝气修复模拟研究[J].中国环境科学,2010,30(1):46-51.
    [30]
    INNOCENTI I,VERGINELLI I,MASSETTI F,et al.Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process[J].Science of the Total Environment,2014,485/486:726-738.
    [31]
    MAIRE J,DAVARZANI H,COLOMBANO S,et al.Targeted delivery of hydrogen for the bioremediation of aquifers contaminated by dissolved chlorinated compounds[J].Environmental Pollution,2019,249:443-452.
    [32]
    VON SCHENCK H,KÄLLSTRÖM K.Reactive transport modelling of organic complexing agents in cement stabilized low and intermediate level waste[J].Physics and Chemistry of the Earth,2014,(70/71):114-126.
    [33]
    WEST M R,KUEPER B H.Numerical simulation of DNAPL source zone remediation with in situ chemical oxidation (ISCO)[J].Advances in Water Resources,2012,44:126-139.
    [34]
    CHOWDHURY A I A,KROL M M,KOCUR C M,et al.nZVI injection into variably saturated soils:field and modeling study[J].Journal of Contaminant Hydrology,2015,183:16-28.
    [35]
    ZHANG H,SCHWARTZ F W.Simulating the in situ oxidative treatment of chlorinated ethylenes by potassium permanganate[J].Water Resources Research,2000,36(10):3031-3042.
    [36]
    HENDERSON T H,MAYER K U,PARKER B L,et al.Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate[J].Journal of Contaminant Hydrology,2009,106:195-211.
    [37]
    STRUTZ T,HORNBRUCH G,DAHMKE A,et al.Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media[J].Journal of Contaminant Hydrology,2016,191:54-65.
    [38]
    李涛,刘利,丁洲祥.大变形黏土防渗层中的污染物迁移和转化规律研究[J].岩土力学,2012,33(3):687-694.
    [39]
    XIE H J,YAN H X,FENG S J,et al.An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation,diffusion,and degradation[J].Environmental Science and Pollution Research International,2016,23(19):19362-19375.
    [40]
    LEWIS T W,PIVONKA P,SMITH D W.Theoretical investigation of the effects of consolidation on contaminant transport through clay barriers[J].International Journal for Numerical and Analytical Methods in Geomechanics,2009,33:95-116.
  • Relative Articles

    [1]XU Yi, JIANG Xu, XU Yingming. EFFECT OF ADDING KNO3 AND KH2PO4 ON IMMOBILIZATION REMEDIATION OF CADMIUM IN POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 229-236. doi: 10.13205/j.hjgc.202412027
    [2]ZHOU Ziyan, HUANG Xiang, GU Jinchuan, XUE Jia, WU Yi, YONG Yi. PASSIVATION OF ZINC, LEAD AND CADMIUM CONTAMINATED SOIL BY INORGANIC SALT MODIFIED BENTONITE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 150-158. doi: 10.13205/j.hjgc.202307021
    [3]YANG Shu, ZHOU Honghui, LI Ying, ZHANG Yun, TIAN Senlin, CHENG Xia, HU Han, HU Xuewei. EFFECT OF SAPONIN ON BIOLOGICAL OXIDATION OF PYRITE-CONTAINING SOLID WASTE FROM MINING AND DRESSING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 129-135,215. doi: 10.13205/j.hjgc.202303017
    [4]MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
    [5]LI Yalin, LI Peng, TANG Yifan, ZHANG Wei, WANG Enci, JIN Mingyu. IMPACT OF DC VOLTAGE ON ELECTRO-REMEDIATION OF Pb AND As CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 131-135,184. doi: 10.13205/j.hjgc.202208018
    [6]WANG Jinnan, WU Yufeng, LI Liangzhong, YU Lu, YANG Mengchuan, LI Bin, GUO Lianjie. RESEARCH PROGRESS OF BARRIER TECHNOLOGIES FOR SITE COMBINED HEAVY METAL POLLUTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 244-253. doi: 10.13205/j.hjgc.202204034
    [7]LI Zhijian, WEI Li, NI Heng. RESEARCH ADVANCES AND CASE STUDY ON PASSIVATION AND CLOGGING IN PERMEABLE REACTIVE BARRIER(PRB)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 206-213,224. doi: 10.13205/j.hjgc.202202031
    [8]XU Yi, YANG Shi-hong, YOU Guo-xiang, HOU Jun. REVIEW OF ROLES OF EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) IN MEDIATING THE STRUCTURE, FUNCTION AND SURFACE PROPERTIES OF MICROBIAL AGGREGATES IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 238-245,269. doi: 10.13205/j.hjgc.202209032
    [9]LI Yajing, WANG Shaopo, LIU Lu, JIA Liyuan. SECRETORY CHARACTERISTICS OF EPS AND THE SIGNAL MOLECULES RELEASE UNDER DIFFERENT ORGANIC LOADING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 47-52. doi: 10.13205/j.hjgc.202202008
    [10]MAO Xinyu, YU Huaizhi, ZHAI Senmao, JIANG Xiaosan, XU Zhou, WANG Qilin. LONG-TERM STABILIZATION EFFECT AND ECOLOGICAL RISK ASSESSMENT OF SOIL CADMIUM AND LEAD BY USING MODIFIED COCONUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 140-146. doi: 10.13205/j.hjgc.202204020
    [11]HUO Jiajia, LUO Shengxu, WANG Yanshi, WANG Xinwei, DENG Qin, LI Jinying. PASSIVATION OF LEAD IN SOIL BY FULVIC ACID-NANO-ZERO-VALENT IRON COMPLEX[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 112-120. doi: 10.13205/j.hjgc.202204016
    [12]PENG Yan, CHEN Di-yun, CHEN Nan, ZENG Lin-wei. PASSIVATION EFFECT OF CALCIUM PHOSPHATE ON URANIUM IN SEDIMENTS IN DOWNSTREAM WATERS OF A URANIUM MINE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 13-19,24. doi: 10.13205/j.hjgc.202104003
    [13]CHEN Jin-yuan, LIU Xue-wen, LV Ju-feng, LV Bo-sheng, WEI Xiu-zhen. EFFECT OF BIOCHAR ON COMPOSITION OF SMP AND EPS IN ACTIVATED SLUDGE AND NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 133-138,207. doi: 10.13205/j.hjgc.202009022
    [14]CHEN Yun-fan, QIAN Meng-meng, KANG Zi-wei, DING Jia-hui, CHEN Jing, JIA Wen-lin. START-UP OF A COMPLETELY AUTOTROPHIC NITROGEN REMOVAL OVER NITRITE PROCESS ENHANCED BY MAGNETIC FIELD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 142-146. doi: 10.13205/j.hjgc.202008024
    [15]SONG Le-yuan, GUO Xin-chao, YU Jing. EFFECT OF SUSPENDED CARRIERS ADDITION ON PERFORMANCE AND MEMBRANE FOULING OF AnMBR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 87-92. doi: 10.13205/j.hjgc.202001013
    [16]ZHOU Wen-wu, CHEN Guan-yi, DAN Zeng, QIONGDA Zhuo-ma, ZHOU Peng, WANG Jing. COMPARISON AND SELECTION OF REHABILITATION SCHEMES FOR GROUNDWATER LEAD IN LANDFILL AREA: A CASE STUDY OF LHASA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 88-93. doi: 10.13205/j.hjgc.202006014
    [17]ZHOU Yu-han, PAN Yang, ZHANG Rui-liang, ZHENG Chao-ting, ZHI Zhong-xiang, ZHEN Guang-yin. EFFECT OF ACID-ALKALI MICROWAVE COMBINED PRETREATMENT ON RUPTURE OF SLUDGE EXTRACELLULAR POLYMERIC SUBSTANCES AND METHANE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 19-25,31. doi: 10.13205/j.hjgc.202012004
    [18]CAO Da-qi, SUN Xiu-zhen, FANG Xiao-min, JIN Jing-yi, YANG Xiao-xuan, HAO Xiao-di. RECOVERY OF EXTRACELLULAR POLYMERIC SUBSTANCE: IMPACT FACTORS IN FORWARD OSMOSIS SEPARATION OF SODIUM ALGINATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 71-75. doi: 10.13205/j.hjgc.202008012
    [19]Cong Jing Yan Dahai Li Li Jiang Xuguang Zhou Yingnan He Jie Wang Qi, . CONDENSATION AND ABSORPTION KINETICS OF THE CEMENT RAW MEAL ON LEAD AND CADMIUM AT LOW-TEMPERATURES DURING CO-PROCESSING IN CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 103-107. doi: 10.13205/j.hjgc.201504022
    [20]STUDY ON THE START-UP TECHNOLOGY OF TREATING KITCHEN WASTE IN IC ANAEROBIC REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 87-90. doi: 10.13205/j.hjgc.201412015
  • Cited by

    Periodical cited type(1)

    1. 党秀丽,阿娜尔,苏燕,管秀静,欧成浩,田楚琪,王坚. 基于文献计量法对场地土壤重金属污染修复研究进展的知识图谱分析. 土壤通报. 2024(01): 277-287 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.0 %FULLTEXT: 14.0 %META: 85.3 %META: 85.3 %PDF: 0.7 %PDF: 0.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.1 %其他: 19.1 %[]: 0.7 %[]: 0.7 %上海: 2.9 %上海: 2.9 %临汾: 0.7 %临汾: 0.7 %丽水: 0.7 %丽水: 0.7 %北京: 2.2 %北京: 2.2 %十堰: 0.7 %十堰: 0.7 %天津: 0.7 %天津: 0.7 %常德: 0.7 %常德: 0.7 %扬州: 1.5 %扬州: 1.5 %昆明: 2.2 %昆明: 2.2 %晋城: 1.5 %晋城: 1.5 %朝阳: 0.7 %朝阳: 0.7 %杭州: 1.5 %杭州: 1.5 %武汉: 0.7 %武汉: 0.7 %泰安: 1.5 %泰安: 1.5 %济源: 1.5 %济源: 1.5 %漯河: 1.5 %漯河: 1.5 %芒廷维尤: 30.1 %芒廷维尤: 30.1 %芝加哥: 1.5 %芝加哥: 1.5 %苏州: 1.5 %苏州: 1.5 %西宁: 11.0 %西宁: 11.0 %贵阳: 0.7 %贵阳: 0.7 %运城: 7.4 %运城: 7.4 %遵义: 0.7 %遵义: 0.7 %邯郸: 0.7 %邯郸: 0.7 %郑州: 2.2 %郑州: 2.2 %重庆: 0.7 %重庆: 0.7 %长沙: 0.7 %长沙: 0.7 %长治: 1.5 %长治: 1.5 %其他[]上海临汾丽水北京十堰天津常德扬州昆明晋城朝阳杭州武汉泰安济源漯河芒廷维尤芝加哥苏州西宁贵阳运城遵义邯郸郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (219) PDF downloads(15) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return