Citation: | LI Shaobin, YU Dan, KONG Jun, CHEN Jixin, WU Shuiping, WANG Yao, CHEN Nengwang. COASTAL LAND-OCEAN-ATMOSPHERE COOPERATIVE MANAGEMENT OF NITROGEN AND PHOSPHORUS POLLUTION:MONITORING,MODELING AND DECISION-MAKING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 12-21. doi: 10.13205/j.hjgc.202206002 |
[1] |
陈能汪.全球变化下九龙江河流河口系统营养盐循环过程、通量与效应[J].海洋地质与第四纪地质, 2017, 38(1):23-31.
|
[2] |
骆永明.中国海岸带可持续发展中的生态环境问题与海岸科学发展[J].中国科学院院刊, 2016, 31(10):1133-1142.
|
[3] |
余东,朱容娟,梁斌,等.基于陆海统筹的渤海山东省近岸海域总氮总量控制研究[J].海洋环境科学, 2021, 40(6):832-837.
|
[4] |
焦念志,刘纪化,石拓,等.实施海洋负排放践行碳中和战略[J].中国科学(地球科学), 2021, 51(4):632-643.
|
[5] |
苑晶晶,吕永龙,贺桂珍.海洋可持续发展目标与海洋和滨海生态系统管理[J].生态学报, 2017, 37(24):8139-8147.
|
[6] |
张悦,许道艳,廖国祥,等.中国海洋保护区的生态环境监测工作[J].海洋环境科学, 2021, 40(5):739-744.
|
[7] |
罗川,李兆富,席庆,等. HSPF模型水文水质参数敏感性分析[J].农业环境科学学报, 2014, 33(10):1995-2002.
|
[8] |
MOHAMOUD Y, ZHANG H. Applications of linked and nonlinked complex models for TMDL development:approaches and challenges[J]. Journal of Hydrologic Engineering, 2019, 24(1):04018055.
|
[9] |
ARNOLD J G, MORIASI D N, GASSMAN P W, et al. SWAT:model use, calibration, and validation[J]. Transactions of the ASABE, 2012, 55(4):1491-1508.
|
[10] |
HEAPS N. On the numerical solution of the three-dimensional hydrodynamical equations for tides and storm surges[J]. Mem. Soc. Roy. Sci. Liege, 1972, 6(1):143-180.
|
[11] |
BLUMBERG A, MELLOR G. A description of a three-dimensional coastal ocean circulation model[M]. Coastal and Estuarine Sciences, American Geophysical Union, 1987, 1-16.
|
[12] |
张存智.黄海北部海域三维潮流数值模型[J].海洋预报, 2000, 17(1):1-12.
|
[13] |
朱耀华,方国洪.陆架和浅海环流的一个三维正压模式及其在渤、黄、东海的应用[J].海洋学报, 1994, 16(6):11-25.
|
[14] |
SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics:from air pollution to climate change[M]. 3rd edition, Hoboken, New Jersey, 2016.
|
[15] |
ZHANG L M, PADRO J, BARRIE L,et al. A size-segregated particle dry deposition scheme for an atmospheric aerosol module[J]. Atmospheric Environment, 2001, 35(3):549-560.
|
[16] |
朴香花,周集体,王竞,等.磷酸盐在大连湾时空分布的数值模拟研究[J].大连理工大学学报, 2006, 46(6):819-822.
|
[17] |
张燕,孙英兰,袁道伟,等.胶州湾氮、磷浓度的三维数值模拟[J].中国海洋大学学报, 2007, 37(1):21-26.
|
[18] |
YU D, CHEN N W, CHENG P, et al. Hydrodynamic impacts on tidal-scale dissolved inorganic nitrogen cycling and export across the estuarine turbidity maxima to coast[J]. Biogeochemistry, 2020, 151(1):81-98.
|
[19] |
LUO X, JIAO J J. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks[J]. Water Research, 2016, 102:11-31.
|
[20] |
WANG F F, XIAO K, SANTOS I R, et al. Porewater exchange drives nutrient cycling and export in a mangrove-salt marsh ecotone[J]. Journal of Hydrology, 2022, 606:127401.
|
[21] |
IM U, CHRISTODOULAKI S, VIOLAKI K, et al. Atmospheric deposition of nitrogen and sulfur over southern Europe with focus on the Mediterranean and the Black Sea[J]. Atmospheric Environment, 2013, 81:660-670.
|
[22] |
ZHU L, CHEN Y, GUO L, et al. Estimate of dry deposition fluxes of nutrients over the East China Sea:the implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans[J]. Atmospheric Environment, 2013, 69:131-138.
|
[23] |
GLASGOW H B, BURKHOLDER J M, REED R E, et al. Real-time remote monitoring of water quality:a review of current applications, and advancements in sensor, telemetry, and computing technologies[J]. Journal of Experimental Marine Biology and Ecology, 2004, 300(1/2):409-448.
|
[24] |
MA J, LI P C, CHEN Z Y, et al. Development of an integrated syringe-pump-based environmental-water analyzer (iSEA) and application of it for fully automated real-time determination of ammonium in fresh water[J]. Analytical Chemistry, 2018, 90:6431-6435.
|
[25] |
GALLARDO-GONZALEZ J, BARAKET A, BOUDJAOUI S, et al. A fully integrated passive micro fluidic Lab-on-a-Chip for real-time electrochemical detection of ammonium:sewage applications[J]. Science of the Total Environment, 2019, 653:1223-1230.
|
[26] |
LOHSE K A, SANDERMAN J, AMUNDSON R. Identifying sources and processes influencing nitrogen export to a small stream using dual isotopes of nitrate[J]. Water Resources Research, 2013, 49(3):5715-5731.
|
[27] |
DUDLEY B D, SHIMA J S. Algal and invertebrate bioindicators detect sewage effluent along the coast of Titahi Bay, Wellington, New Zealand[J]. New Zealand Journal of Marine and Freshwater Research, 2010, 44(1):39-51.
|
[28] |
BRIAND C, PLAGNES V, SEBILO A M, et al. Combination of nitrate (N, O) and boron isotopic ratios with microbiological indicators for the determination of nitrate sources in karstic groundwater[J]. Environmental Chemistry, 2013, 10:365-369.
|
[29] |
LI S B, CAI X M, EMAMINEJA S A, et al. Developing an integrated technology-environment-economics model to simulate food-energy-water systems in corn belt watersheds[J]. Environmental Modelling&Software, 2021, 143:105083.
|
[30] |
HANSEN A T, CAMPBELL T, CHO S J, et al. Integrated assessment modeling reveals near-channel management cost-effective to improve water quality in agricultural watersheds[J]. Proceedings of the National Academy of Sciences, 2021, 118(28).
|
[31] |
WANG Z Z, ZHANG T Q, TAN C S, et al. Modeling of phosphorus loss from field to watershed:a review[J]. Journal of Environmental Quality, 2020,49(5):1-22.
|
[32] |
PETERSON S M, FLYNN A T, TRAYLOR J P. Groundwater-flow model of the northern high plains aquifer in colorado, kansas, nebraska, south dakota, and wyoming:U.S. Geological Survey Scientific Investigations Report 2016-5153[R]., 2016.
|
[33] |
YUAN L F, SINSHAW T, FORSHAY K J. Review of watershed-scale water quality and nonpoint source pollution models[J]. Geosciences, 2020, 10(25):1-36.
|
[34] |
李新,马瀚青,冉有华,等.陆地碳循环模型-数据融合:前沿与挑战[J].中国科学(地球科学), 2021, 51(10):1650-1663.
|
[35] |
LI S B, WALLINGTON K, NIROULA S, et al. A modified response matrix method to approximate SWAT for computationally intense applications[J]. Environmental Modelling and Software, 2022, 148:105269.
|
[36] |
ZHANG X S, SRINIVASAN R, van LIEW M. Approximating SWAT model using artificial neural network and support vector machine[J]. JAWRA Journal of the American Water Resources Association, 2009, 45(2):460-474.
|
[37] |
CAI X M, ZENG R J, KANG W H, et al. Strategic planning for drought mitigation under climate change[J]. Journal of Water Resources Planning and Management, 2015, 141(9):04015004.
|
[38] |
KARPATNE A, WATKINS W, READ J, et al. Physics-guided Neural Networks (PGNN):an application in lake temperature modeling[J]. 2017.
|
[39] |
SCAVIA D, BERTANI I, OBENOUR D R, et al. Ensemble modeling informs hypoxia management in the northern Gulf of Mexico[J]. Proceedings of the National Academy of Sciences, 2017, 114(33):8823-8828.
|
[40] |
TIWARI M K, CHATTERJEE C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)[J]. Journal of Hydrology, 2010, 382(1/2/3/4):20-33.
|
[41] |
LEENDERTSE J J, GRITTON E C. A water-quality simulation model for well mixed estuaries and coastal seas[M]. Santa monica, California, 1970.
|
[42] |
JIANG R, WANG Y S. Modeling the ecosystem response to summer coastal upwelling in the northern South China Sea[J]. Oceanologia, 2018, 60(1):32-51.
|
[43] |
管卫兵,王丽娅,许东峰.珠江河口氮和磷循环及溶解氧的数值模拟Ⅰ模式建立[J].海洋学报, 2003, 25(1):52-60.
|
[44] |
朴香花,周集体,项学敏,等. NH3-N在大连湾的水环境行为模拟研究[J].海洋环境科学, 2006, 25(2):54-57.
|
[45] |
CHEN N W, WANG J, LIU X, et al. Exploring seasonal and annual nitrogen transfer and ecological response in river-coast continuums based on spatially explicit models[J]. Journal of Geophysical Research:Biogeosciences, 2022, 127(1):e2021JG006634.
|
[46] |
ARNDT S, LACROIX G, GYPENS N, et al. Nutrient dynamics and phytoplankton development along an estuary-coastal zone continuum:a model study[J]. Journal of Marine Systems, 2011, 84(3/4):49-66.
|
[47] |
POWLEY H R, KROM M D, CAPPELLEN P V. Understanding the unique biogeochemistry of the Mediterranean Sea:insights from a coupled phosphorus and nitrogen model[J]. Global Biogeochemical Cycles, 2017, 31(6):1010-1031.
|
[48] |
ZHANG J, ZHANG G S, BI Y F, et al. Nitrogen species in rainwater and aerosols of the Yellow and East China seas:effects of the East Asian monsoon and anthropogenic emissions and relevance for the NW Pacific Ocean[J]. Global Biogeochemical Cycles, 2011, 25(3):1-14.
|
[49] |
TAKETANI F, AITA M N, YAMAJI K, et al. Seasonal response of north western pacific marine ecosystems to deposition of atmospheric inorganic nitrogen compounds from East Asia[J]. Scientific Reports, 2018, 8(1):1-9.
|
[50] |
KELLY J T, BHAVE P V, NOLTE C G, et al. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model[J]. Geoscientific Model Development, 2010, 3(1):257-273.
|
[51] |
LIU Y M, ZHANG S T, FAN Q, et al. Accessing the impact of sea-salt emissions on aerosol chemical formation and deposition over pearl river delta, China[J]. Aerosol and Air Quality Research, 2015, 15(6):2232-2245.
|
[52] |
WEI X L, BAILEY R T, RECORDS R M, et al. Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model[J]. Environmental Modelling&Software, 2019, 122:104242.
|
[53] |
ANDERSON R, KESHWANI D, GURU A, et al. An integrated modeling framework for crop and biofuel systems using the DSSAT and GREET models[J]. Environmental Modelling&Software, 2018, 108:40-50.
|
[54] |
BUA X Q, LIN G P, SHEN X B, et al. Numerical simulation of aircraft thermal anti-icing system based on a tight-coupling method[J]. International Journal of Heat and Mass Transfer, 2020, 148:119061.
|
[55] |
XIANG Z C, BAILEY R T, NOZARI S, et al. DSSAT-MODFLOW:a new modeling framework for exploring groundwater conservation strategies in irrigated areas[J]. Agricultural Water Management, 2020, 232:106033.
|
[56] |
MATHEW M M, RAO N S, MANDLA V R. Development of regression equation to study the Total Nitrogen, Total Phosphorus and Suspended Sediment using remote sensing data in Gujarat and Maharashtra coast of India[J]. Journal of Coast Conservation, 2017, 21:917-927.
|
[57] |
CAI X M. Implementation of holistic water resources-economic optimization models for river basin management-Reflective experiences[J]. Environmental Modelling and Software, 2008, 23(1):2-18.
|
[58] |
吴迪,王菊英,马德毅,等.基于PSR框架的典型海湾富营养化综合评价方法研究[J].海洋湖沼通报, 2011(1):131-136.
|
[59] |
庞文博,张秋丰,陈燕珍,等.基于PSR模型和层次分析法的渤海湾天津近岸海域富营养化评价[J].海洋湖沼通报, 2020(6):111-117.
|
[60] |
AGUIRRE-RUBÍ J, LUNA-ACOSTA A, ORTIZ-ZARRAGOITIA M, et al. Assessment of ecosystem health disturbance in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as sentinel species[J]. Science of the Total Environment, 2017, 618:718-735.
|
[61] |
CARPENTER K E, JOHNSON J M, BUCHANAN C. An index of biotic integrity based on the summer polyhaline zooplankton community of the Chesapeake Bay[J]. Marine Environmental Research, 2006, 62:165-180.
|
[62] |
VAN LOON W, BOON A R, GITTENBERGER A, et al. Application of the benthic ecosystem quality index 2 to benthos in dutch transitional and coastal waters[J]. Journal of Sea Research, 2015, 103:1-13.
|
[63] |
孙永坤,杨光,李超伦,等.胶州湾浮游动物生物完整性指数的建立[J].海洋科学, 2015, 39(10):1-7.
|
[64] |
WANG Y F, ZHAO H Y, LI L Y, et al. Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis[J]. Energy Policy, 2013, 58:312-318.
|
[65] |
HUONG D T T, HA N T T, DO KHANH G, et al. Sustainability assessment of coastal ecosystems:DPSIR analysis for beaches at the northeast coast of Vietnam[J]. Environment, Development and Sustainability, 2020,24(4):5032-5051.
|
[66] |
朱静,陈新永,王靖飞,等.海洋环境容量研究进展及计算方法概述[J].水科学与工程技术, 2009(4):8-11.
|
[67] |
SUN L, WANG J, ZHANG H F, et al. The characteristics and mechanism of changes in the marine environmental capacity of the estuaries of haizhou bay in northern jiangsu from 2006 to 2016[J]. Journal of Marine Science and Engineering, 2020, 8(10), 787.
|
[68] |
SONG J Y, GRAMIG B M, CIBIN R, et al. Integrated economic and environmental assessment of cellulosic biofuel production in an agricultural watershed[J]. Bioenergy Research, 2017, 10(2):509-524.
|
[69] |
GRAMIG B M, REELING C J, CIBIN R, et al. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy[J]. Environmental Science&Technology, 2013, 47(4):1784-1791.
|
[70] |
吕永龙,王一超,苑晶晶,等.可持续生态学[J].生态学报, 2019, 39(10):3401-3415.
|
[71] |
YAEGER M A, HOUSH M, CAI X, et al. An integrated modeling framework for exploring flow regime and water quality changes with increasing biofuel crop production in the U.S.Corn Belt[J]. Water Resources Research, 2014, 50(12):9385-9404.
|
[72] |
DU E, TIAN Y, CAI X M, et al. Exploring spatial heterogeneity and temporal dynamics of human-hydrological interactions in large river basins with intensive agriculture:a tightly coupled, fully integrated modeling approach[J]. Journal of Hydrology, 2020, 591:125313.
|
[73] |
NOËL P H, CAI X M. On the role of individuals in models of coupled human and natural systems:lessons from a case study in the Republican River Basin[J]. Environmental Modelling&Software, 2017, 92:1-16.
|
[74] |
LINDKVIST E, WIJERMANS N, DAW T M, et al. Navigating complexities:agent-based modeling to support research, governance, and management in small-scale fisheries[J]. Frontiers in Marine Science, 2020, 6:1-12.
|