Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
QUAN Zhaoxi, CHEN Xiangsheng, CHEN Feng, GAO Wang, HAN Wenlong. ANALYSIS OF CARBON REDUCTION EFFECT OF TUNNEL CONSTRUCTION MUCK SOIL UTILIZATION BASED ON LIFE CYCLE ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 91-98,162. doi: 10.13205/j.hjgc.202310012
Citation: ZHENG Kaixuan, HUANG Junlong, LUO Xingshen, WANG Hongtao, CHEN Tan. APPLICATION PROGRESS OF NUMERICAL SIMULATION IN PERMEABLE REATIVE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 22-30. doi: 10.13205/j.hjgc.202206003

APPLICATION PROGRESS OF NUMERICAL SIMULATION IN PERMEABLE REATIVE

doi: 10.13205/j.hjgc.202206003
  • Received Date: 2022-02-16
    Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • Permeable reactive barrier (PRB) is a green and sustainable groundwater remediation technology.Numerical simulation helps to evaluate the PRB performance under different parameters (such as dimension,installation location and orientation,permeability coefficient,etc.),which is the basis for PRB engineering design.This paper summarizes the application characteristics of typical groundwater models and software in PRB design,compares the application status of domestic and foreign numerical simulation methods in PRB engineering design,longevity evaluation and parameter optimization,and discusses the application prospects and key research directions of numerical simulation in PRB technology,to provide a reference for the promotion and application of PRB technology in China.
  • [1]
    GAVASKAR A R, GUPTA N, SASS B, et al. Permeable Barriers for Groundwater Remediation[M]. Battelle Press, Columbus, OH (United States), 1998.
    [2]
    PULS R W. Permeable Reactive Barrier Technologies for Contaminant Remediation[M]. USEPA, 1998:600.
    [3]
    QUINTON G E, BUCHANAN JR R J, ELLIS D E, et al. A method to compare groundwater cleanup technologies[J]. Remediation Journal, 1997, 7(4):7-16.
    [4]
    REETER C, CHAO S, GAVASKAR A. Permeable reactive wall remediation of chlorinated hydrocarbons in groundwater[R]. Environmental Security Technology Certification Program Office (DOD) Arlington Va, 1999.
    [5]
    PAINTER B D. Optimisation of permeable reactive barrier systems for the remediation of contaminated groundwater[D]. Christcharch:Lincoln University, 2005.
    [6]
    ALI A F, ABD ALI Z T. Sustainable use of concrete demolition waste as reactive material in permeable barrier for remediation of groundwater:batch and continuous study[J]. Journal of Environmental Engineering, 2020, 146(7):04020048.
    [7]
    FALCIGLIA P P, GAGLIANO E, BRANCATO V, et al. Microwave based regenerating permeable reactive barriers (MW-PRBs):proof of concept and application for Cs removal[J]. Chemosphere, 2020, 251:126582.
    [8]
    FAISAL A A, ABBAS T R, JASSAM S H. Removal of zinc from contaminated groundwater by zero-valent iron permeable reactive barrier[J]. Desalination and Water Treatment, 2015, 55(6):1586-1597.
    [9]
    GILLHAM R W, VOGAN J, GUI L, et al. Iron barrier walls for chlorinated solvent remediation[M]//In Situ Remediation of Chlorinated Solvent Plumes. Springer, 2010:537-571.
    [10]
    左亚会.我国地下水数值模拟的研究进展及应用现状[J].珠江现代建设, 2017(5):9-12.
    [11]
    XU Z G, WU Y Q, YU F. A three-dimensional flow and transport modeling of an aquifer contaminated by perchloroethylene subject to multi-PRB remediation[J]. Transport in Porous Media, 2012, 91(1):319-337.
    [12]
    OBIRI-NYARKO F, KWIATKOWSKA J, MALINA G, et al. Geochemical modelling for predicting the long-term performance of zeolite-PRB to treat lead contaminated groundwater[J]. Journal of Contaminant Hydrology, 2015, 177/178:76-84.
    [13]
    SANTISUKKASAEM U, OLAWUYI F, OYE P, et al. Artificial neural network (ANN) for evaluating permeability decline in permeable reactive barrier (PRB)[J]. Environmental Processes, 2015, 2(2):291-307.
    [14]
    HOU D Y, LI F S. Complexities surrounding China's soil action plan[J]. Land Degradation&Development, 2017, 28(7):2315-2320.
    [15]
    HILL M C, BANTA E R, HARBAUGH A W, et al. MODFLOW-2000, the U.S. Geological Survey modular ground-water model; user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs. US Geological Survey Open-File Report 00-184[R]. U.S. Geological Survey, 2000.
    [16]
    卢丹美.地下水数值模型和软件的特点及在我国的应用现状[J].中国水运(下半月), 2013(1):107-109.
    [17]
    HARBAUGH A W. MODFLOW-2005:the U.S. Geological Survey modular ground-water model-the ground-water flow process[J]. Techniques and Methods, 2005.
    [18]
    康明亮,韩东梅,GEWIRIZ Océane.计算机模拟在化学理论与实验教学中的应用[J].大学化学, 2016, 31(10):23-28.
    [19]
    POLLPCK D W. User guide for MODPATH Version 7:A Particle-Tracking Model for MODFLOW[R]. 2016-1086, U.S. Geological Survey, 2016.
    [20]
    HARBAUGH A W. A computer program for calculating subregional water budgets using results from the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model[R]. 90-392, U.S. Geological Survey; Books and Open-File Reports Section, 1990.
    [21]
    KIPP K L. HST3D:a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems[R]. Water-Resources Investigations Report, 86-4095, U.S. Geological Survey, 1987, 86-4095.
    [22]
    ZHENG C. MT3D:A Modular Three-Dimensional Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems[M]. SS Papadopulos&Associates, 1992.
    [23]
    ZHENG C, WANG P P. MT3DMS:a Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide[G]. Environmental Laboratory (US), 1999.
    [24]
    CLEMENT T P. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-dimensional Groundwater Systems[R]. Pacific Northwest National Lab. Richland, WA (US), 1999.
    [25]
    LIANG L, SULLIVAN A B, WEST O R, et al. Predicting the precipitation of mineral phases in permeable reactive barriers[J]. Environmental Engineering Science, 2003, 20(6):635-653.
    [26]
    BENNER S G, BLOWES D W, GLOULD W D, et al. Geochemistry of a permeable reactive barrier for metals and acid mine drainage[J]. Environmental Science&Technology, ACS Publications, 1999, 33(16):2793-2799.
    [27]
    PROMMER H, AZIZ L H, BOLANO N, et al. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron[J]. Journal of Contaminant Hydrology, 2008, 97(1/2):13-26.
    [28]
    KWONG S, SAMLL J, TAHAR B. Modelling the remediation of contaminated groundwater using zero-valent iron barrier[J]. Proceeding of WM, 2007,7.
    [29]
    PARKHURST D L, KIPP K L, CHARLTON S R. PHAST Version 2:a program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions[J]. US Geological Survey Techniques and Methods, 2010, 6:A35.
    [30]
    MAYER. Reactive Transport Modeling of An In Situ Reactive Barrier for the Treatment of Hexavalent Chromium and Trichloroethylene in Groundwater[EB/OL]. 2001/2020-12-11. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2001WR000234.
    [31]
    YANG C B, SAMPER J, MOLINERO J. Inverse microbial and geochemical reactive transport models in porous media[J]. Physics and Chemistry of the Earth, 2008, 33(14/15/16):1026-1034.
    [32]
    谭勇,梁婕,曾光明,等.基于数值模拟和响应面法的PRB设计影响研究[J].环境工程学报, 2016, 10(2):655-661.
    [33]
    HEMSI P S, SHACKELFORD C D. An evaluation of the influence of aquifer heterogeneity on permeable reactive barrier design:Permeable Reactive Barrier Design[J]. Water Resources Research, 2006, 42(3).
    [34]
    JIRASKO D, VANICEK I. The interaction of groundwater with permeable reactive barrier (PRB)[C]//Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering:The Academia and Practice of Geotechnical Engineering, Alexandria:IOS Press, 2009:2473-2478.
    [35]
    BARMA S D. Development of groundwater management model linking GMS with GA-PSO-based Hybrid Algorithm[J]. Intermational Journal of Engineering Science and Technology, 2010, 2(12):7297-7300.
    [36]
    RAD P R, FAZLALI A. Optimization of permeable reactive barrier dimensions and location in groundwater remediation contaminated by landfill pollution[J]. Journal of Water Process Engineering, 2020, 35:101196.
    [37]
    CHUNG Y W, KIM J, KONG S H. Performance prediction of permeable reactive barriers by three-dimensional groundwater flow simulation[J]. International Journal of Environmental Science and Development, 2011:138-141.
    [38]
    MAAMOUN I, ELJAMAL O, FALYOUNA O, et al. Multi-objective optimization of permeable reactive barrier design for Cr (Ⅵ) removal from groundwater[J]. Ecotoxicology and Environmental Safety, 2020, 200:110773.
    [39]
    DIERSCH H J G. FEFLOW:Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media[M]. Springer Science&Business Media, 2013.
    [40]
    BAKIR A. Development of a Seaweed-based Fixed-bed Sorption Column for the Removal of Metals in a Waste Stream[D]. Waterford Institute of Technology, 2010.
    [41]
    SACHDEV S, PAREEK S, MAHADEVAN B, et al. Modeling and simulation of single phase fluid flow and heat transfer in packed beds[C]//Proceedings of the 2012 COMSOL conference in Bangalore, 2012.
    [42]
    MASOOD Z B, ABD ALI Z T. Numerical modeling of two-dimensional simulation of groundwater protection from lead using different sorbents in permeable barriers[J]. Environmental Engineering Research, 2020, 25(4):605-613.
    [43]
    POWELL R M, BLOWES D W, GILLHAM R W, et al. Permeable Reactive Barrier Technologies for Contaminant Remediation[R]. US EPA, 1998, 600.
    [44]
    CRAIG J R, RABIDEAU A J, SURIBHATLA R. Analytical expressions for the hydraulic design of continuous permeable reactive barriers[J]. Advances in Water Resources, 2006, 29(1):99-111.
    [45]
    GAVASKAR A R. Design and construction techniques for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1):41-71.
    [46]
    KOBER R, SCHAFER D, EBERT M, et al. Coupled in situ reactors using Fe and activated carbon for the remediation of complex contaminant mixtures in groundwater[J]. 2002(275):435-439.
    [47]
    ITRC T. Permeable reactive barrier:technology update[Z]. The Interstate Technology&Regulatory Council PRB, 2011.
    [48]
    NAIDU R, BIRKE V. Permeable Reactive Barrier:Sustainable Groundwater Remediation[M]. Boca Raton:CRC Press, 2018.
    [49]
    ELDER C R, BENSON C H, EYKHOLT G R. Effects of heterogeneity on influent and effluent concentrations from horizontal permeable reactive barriers[J]. Water Resources Research, 2002, 38(8):27-1-27-19.
    [50]
    PULS R W. Long-term performance of permeable reactive barriers:lessons learned on design, contaminant treatment, longevity, performance monitoring and cost-an overview[M]//Soil and Water Pollution Monitoring, Protection and Remediation. Springer, 2006:221-229.
    [51]
    KLAMMLER H, HATFIELD K. Analytical solutions for flow fields near continuous wall reactive barriers[J]. Journal of Contaminant Hydrology, 2008, 98(1):1-14.
    [52]
    SINGH R, CHAKMA S, BIRKE V. Numerical modelling and performance evaluation of multi-permeable reactive barrier system for aquifer remediation susceptible to chloride contamination[J]. Groundwater for Sustainable Development, 2020, 10:100317.
    [53]
    THAKUR A K, VITHANAGE M, DAS D B, et al. A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment[J]. Environmental Technology&Innovation, 2020, 19:100917.
    [54]
    吕永高,蔡五田,杨骊,等.中试尺度下可渗透反应墙位置优化模拟:以铬污染地下水场地为例[J].水文地质工程地质, 2020, 47(5):189-195.
    [55]
    NARDO A D, BORTONE I, NATALE M D, et al. A heuristic procedure to optimize the design of a permeable reactive barrier for in situ groundwater remediation[J]. Adsorption Science&Technology, 2014, 32(2/3):125-140.
    [56]
    ZINGELMANN M, SCHIPEK M, BITTNER A. Planning of reactive barriers-an integrated, comprehensive but easy to understand modeling approach[M]//Uranium-Past and Future Challenges. Springer, 2015:739-744.
    [57]
    MEDAWELA S, INDRARAINA B. Computational modelling to predict the longevity of a permeable reactive barrier in an acidic floodplain[J]. Computers and Geotechnics, Elsevier, 2020, 124:103605.
    [58]
    SURIBHATLA R M, JANKOVIC I. Numerical modeling of groundwater flow and transport using analytic element method for highly heterogeneous anisotropic formations with estimation of effective hydraulic conductivity[J]. AGUFM, 2006, 2006:H23C-1524.
    [59]
    BIRKE V, BURMEIER H, JEFFERIS S, et al. Permeable reactive barriers (PRBs) in Europe:potentials and expectations[J]. Italy Journal Engineering Geology Environment, 2007, 1:1-8.
    [60]
    陈梦舫.地下水可渗透反应墙修复技术原理、设计及应用[M].北京:科学出版社, 2017.
    [61]
    KALINOVICH I, RUTTER A, POLAND J S, et al. Remediation of PCB contaminated soils in the Canadian Arctic:excavation and surface PRB technology[J]. Science of the Total Environment, Elsevier, 2008, 407(1):53-66.
    [62]
    LIU S J, LI X G, WANG H X. Hydraulics analysis for groundwater flow through permeable reactive barriers[J]. Environmental Modeling&Assessment, 2011, 16(6):591-598.
    [63]
    CHANDRAPPA R, DAS D B. Sustainable Water Engineering:Theory and Practice[M]. John Wiley&Sons, 2014.
    [64]
    KACIMOV A R, KLAMMLER H, ILYINSKII N, et al. Constructal design of permeable reactive barriers:groundwater-hydraulics criteria[J]. Journal of Engineering Mathematics, Springer, 2011, 71(4):319-338.
    [65]
    BORTONE I, DI NARDO A, DI NATALE M, et al. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon[J]. Journal of Hazardous Materials, 2013, 260:914-920.
    [66]
    GUPTA N, FOX T C. Hydrogeologic modeling for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1):19-39.
    [67]
    HENDERSON A D, DEMOND A H. Long-term performance of zero-valent iron permeable reactive barriers:a critical review[J]. Environmental Engineering Science, 2007, 24(4):401-423.
    [68]
    KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2):95-122.
    [69]
    HIGGINS M R, OLSON T M. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation[J]. Environmental Science&Technology, 2009, 43(24):9432-9438.
    [70]
    WEBER A, RUHL A S, AMOS R T. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151:68-82.
    [71]
    JOHNSON R L, THOMS R B, OBRIEN JOHNSON R, et al. Field evidence for flow reduction through a zero-valent iron permeable reactive barrier[J]. Groundwater Monitoring&Remediation, 2008, 28(3):47-55.
    [72]
    FLURY B, FROMMER J, EGGENBERGER U, et al. Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier[J]. Environmental Science&Technology, 2009, 43(17):6786-6792.
    [73]
    LI L, BENSON C H, LAWSON E M. Impact of mineral fouling on hydraulic behavior of permeable reactive barriers[J]. Ground Water, 2005, 43(4):582-596.
    [74]
    AFSHARI A, SHADIZADEH S R, RIAHI M A. The use of artificial neural networks in reservoir permeability estimation from well logs:focus on different network training algorithms[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2014, 36(11):1195-1202.
    [75]
    DAS D B, THIRAKULCHAYA T, DEKA L, et al. Artificial neural network to determine dynamic effect in capillary pressure relationship for two-phase flow in porous media with micro-heterogeneities[J]. Environmental Processes, 2015, 2(1):1-18.
    [76]
    WILKIN R T, PILS R W, SEWELL G W. Long-term performance of permeable reactive barriers using zero-valent iron:Geochemical and microbiological effects[J]. Groundwater, 2003, 41(4):493-503.
    [77]
    LI L, BENSON C H, LAWSON E M. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers[J]. Journal of Contaminant Hydrology, 2006, 83(1):89-121.
    [78]
    JEEN S W, BLOWES D W, GILLHAM R W. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions[J]. Journal of Contaminant Hydrology, 2008, 95(1/2):76-91.
    [79]
    KOUZNETSOVA I, BAYER P, EBERT M, et al. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging[J]. Journal of Contaminant Hydrology, 2007, 90(1):58-80.
    [80]
    HENDERSON A D, DEMOND A H. Impact of solids formation and gas production on the permeability of ZVI PRBs[J]. Journal of Environmental Engineering, 2011, 137(8):689-696.
    [81]
    CARNIATO L, SCHOUPS G, SEUNTIENS P, et al. Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models[J]. Journal of Contaminant Hydrology, 2012, 142/143:93-108.
    [82]
    MORRISON S. Performance evaluation of a permeable reactive barrier using reaction products as tracers[J]. Environmental Science&Technology, 2003, 37(10):2302-2309.
    [83]
    JEEN S W, MAYER K U, GILLHAM R W, et al. Reactive transport modeling of trichloroethene treatment with declining reactivity of iron[J]. Environmental Science&Technology, 2007, 41(4):1432-1438.
    [84]
    JEEN S W, GILLHAM R W, PRZEPIORA A. Predictions of long-term performance of granular iron permeable reactive barriers:field-scale evaluation[J]. Journal of Contaminant Hydrology, 2011, 123(1/2):50-64.
    [85]
    OBIRI-NYARKO F, GRAJALES-MESA S J, MALINA G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111:243-259.
    [86]
    HOSSEINI S M, ATAIE-ASHTIANI B, KHOLGHI M. Bench-scaled nano-Fe0 permeable reactive barrier for nitrate removal[J]. Groundwater Monitoring&Remediation, 2011, 31(4):82-94.
    [87]
    ELJAMAL O, THOMPSON I P, MAAMOUN I, et al. Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal[J]. Journal of Molecular Liquids, 2020, 299:112144.
    [88]
    POLONSKI M, PAWLUK K, RYBKA I. Optimization Model for the Design of Multi-layered Permeable Reactive Barriers[C]//IOP Conference Series:Materials Science and Engineering, 2017, 245:072017.
    [89]
    PAWLUK K, POLONSKI M, WRZESINSKI G, et al. Two-Objective Optimization for Optimal Design of the Multilayered Permeable Reactive Barriers[C]//IOP Conference Series:Materials Science and Engineering, 2019, 471:112044.
    [90]
    MOHAMMED M. Effect of Geological Heterogeneity on Permeable Reactive Barriers in Groundwater Remediation[D]. United States——Missouri:University of Missouri-Kansas City, 2006.
    [91]
    TAN Y, LIANG J, ZENG G M, et al. Effects of PRB design based on numerical simulation and response surface methodology[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):655-661.
    [92]
    BENNER S G, BLOWES D W, MOLSON J W H. Modeling preferential flow in reactive barriers:implications for performance and design[J]. Ground Water, 2001, 39(3):371-379.
    [93]
    ELDER C R. Evaluation and design of permeable reactive barriers amidst heterogeneity[D]. Madison:The University of Wisconsin, 2001.
  • Relative Articles

    [1]YANG Yi, ZHAO Rui, ZHENG Zhenze, SHU Qilin, LIU Wei. FLUORESCENT COMPONENTS, MOLECULAR PROPERTIES AND SOURCES OF DOM IN SECONDARY EFFLUENT OF MUNICIPAL SEWAGE TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 66-72. doi: 10.13205/j.hjgc.202412009
    [2]LIU Yueting, ZHANG Qiang, JIANG Xiaohui, JI Yajun, YUAN Xiaohong, XIE Wenhao, ZHENG Lielong, LUO Jiaxin. SPATIAL-TEMPORAL CHARACTERISTICS OF CARBON EMISSIONS IN URBAN SEWAGE SYSTEM IN XI’AN AND ITS DOMINANT DRIVING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 40-49. doi: 10.13205/j.hjgc.202411005
    [3]LI Xuxia, WANG Yudong, XIAO Youpeng, XU Xu, WANG Haipeng, CHEN Yimeng, LIN Junchuan, HUANG Guisong, HUANG Zhenguo, SUN Ping, MAI Youquan, YANG Shangbo, XU Wang. QUALITY MONITORING OF SHENZHEN’S COASTAL WATERS BY SATELLITE AND ITS SPATIOTEMPORAL VARIATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 243-252. doi: 10.13205/j.hjgc.202401031
    [4]HE Tian, XUE Chonghua, SUN Jiarong, HAN Songlei, LÜ Yongpeng, LI Junqi, WANG Jianlong. RESEARCH PROGRESS ON FORMS AND INFLUENCING FACTORS OF NITROGEN AND PHOSPHORUS IN PARTICULATE MATTERS IN URBAN STORMWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 61-71. doi: 10.13205/j.hjgc.202408008
    [5]QIU Boran, XIA Yijia, BI Jingran, YU Tao, LIN Tong, ZHANG Hanqi, MA Fengmin, ZHEN Guangyin. CARBON EMISSION REDUCTION POTENTIAL FROM CHINA MUNICIPAL SOLID WASTE SORTING TREATMENT BASED ON THE “TWO NETWORKS INTEGRATION” MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 183-191. doi: 10.13205/j.hjgc.202405023
    [6]GENG Jiao, WANG Yang, HU Shugang, WEI Yanjie, SUN Fei, YUAN Peng. WQI-BASED WATER QUALITY ASSESSMENT AND SPATIAL-TEMPORAL CHANGE IN PLAIN RIVER NETWORK AREAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 187-193,209. doi: 10.13205/j.hjgc.202306025
    [7]YANG Yiqing, ZHANG Yuxiang, ZHANG Yufei, LI Yaohuang, WU Mingyu, ZHANG Nan, CHEN Xiaoqiang. GAS PRODUCTION AND LEACHATE PROPERTIES OF MUNICIPAL SOLID WASTE WITH CONTINUOUS INJECTION OF CONCENTRATED NF LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 148-154. doi: 10.13205/j.hjgc.202303020
    [8]WANG Zhenhua, WU Juan, SONG Jianguo, BAI Jie. EFFECTS OF THERMAL HYDROLYSATES FROM MUNICIPAL SOLID WASTE ON SOIL ENZYME ACTIVITY AND SPINACH GROWTH[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 126-131. doi: 10.13205/j.hjgc.202203019
    [9]SHI Zifu, ZHANG Xingqun, ZHOU Yonggang, HUANG Qunxing. OPTIMIZATION OF INCINERATORS FOR HIGH CALORIFIC VALUE DOMESTIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 109-115. doi: DOI:10.13205/j.hjgc.202207016
    [10]HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019
    [11]WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020
    [12]CHEN Yu-di, WANG Jie, CHEN Wei-tian, MA Xie-yao, HU Xiao-dong. SPATIAL AND TEMPORAL CHANGES OF AEROSOL IN YANGTZE RIVER DELTA AND ITS METEOROLOGICAL INTERPRETATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 120-127. doi: 10.13205/j.hjgc.202112018
    [13]XIANG Hong-lin, LIU Li, LIANG Guo-bin, ZHANG Huan-wei, LI Cong-ming, ZHOU Chang, HAN Si-yu, JIANG Jian-guo. PREPARATION OF RDF BY HYDROLYSIS RESIDUES FROM ORGANIC WASTE AND PROPERTIES OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 189-194,147. doi: 10.13205/j.hjgc.202103027
    [14]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [15]REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022
    [16]SUN Jin, TAN Xin, ZHANG Shu-guang, JI Tao. COMPOSITION AND MELTING CHARACTERISTICS OF FLY ASH FROM 14 MSWI PLANTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 124-128. doi: 10.13205/j.hjgc.202110017
    [17]SUN Xiao-jie, WANG Chun-lian, LI Qian, ZHANG Hong-xia, YE Yu-hang. DEVELOPMENT AND EVOLUTION OF CHINA’S DOMESTIC WASTE CLASSIFICATION POLICY SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 65-70. doi: 10.13205/j.hjgc.202008011
    [18]CHEN Feng, CHEN Dan, HU Yong-you. ANALYSIS ON INFLUENCING FACTORS OF EFFECT OF HIGH TEMPERATURE AEROBIC BIOLOGICAL DRYING PROCESS OF GARBAGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 141-145. doi: 10.13205/j.hjgc.202001022
    [20]Ding Jing, Lei Yang. RESEARCH ON SEMI-AEROBIC BIOREACTOR LANDFILL SYSTEM: LEACHATE CHARACTERISTICS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 6-10. doi: 10.13205/j.hjgc.201503002
  • Cited by

    Periodical cited type(6)

    1. 孙广东,马俊怡,郝书,董贺,赵心茹,柴强龙,党岩. 畜禽粪污厌氧消化产甲烷效能的关键影响因素研究进展. 环境工程. 2025(03): 114-129 . 本站查看
    2. 王云琦,杜玉莹,梅红,汪炎. 厌氧消化酸累积条件下强化产甲烷研究与应用. 工业用水与废水. 2024(01): 1-5+26 .
    3. 马芷萱,南亚萍,余涛,廖驰,杨丹,于莉芳,郑兰香. 颗粒活性炭强化葡萄酒生产废水与剩余污泥厌氧共消化的影响. 环境工程学报. 2024(08): 2210-2218 .
    4. 王宁,李美,李媛,赵智强. 乙醇发酵预处理耦合生物炭强化城镇有机固废厌氧产甲烷. 能源环境保护. 2024(05): 166-174 .
    5. 姜琪,张波,苏艳,王高骏,王璟,杨阳,李倩,陈荣. 餐厨垃圾生物炭强化餐厨废水甲烷发酵效能与作用机制. 环境工程技术学报. 2024(06): 1867-1876 .
    6. 刘婉玉. 生物炭固体酸强化污泥厌氧消化的研究进展. 广东化工. 2023(23): 75-77 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.8 %FULLTEXT: 10.8 %META: 87.7 %META: 87.7 %PDF: 1.6 %PDF: 1.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %其他: 0.5 %其他: 0.5 %上海: 5.9 %上海: 5.9 %上饶: 0.1 %上饶: 0.1 %东莞: 2.4 %东莞: 2.4 %临汾: 0.4 %临汾: 0.4 %保定: 1.4 %保定: 1.4 %六安: 0.1 %六安: 0.1 %北京: 13.3 %北京: 13.3 %北海: 0.1 %北海: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 2.8 %南京: 2.8 %南宁: 0.4 %南宁: 0.4 %南昌: 0.4 %南昌: 0.4 %厦门: 1.3 %厦门: 1.3 %台州: 0.5 %台州: 0.5 %合肥: 0.9 %合肥: 0.9 %吉林: 0.3 %吉林: 0.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 1.7 %哈尔滨: 1.7 %嘉兴: 0.1 %嘉兴: 0.1 %大理: 0.1 %大理: 0.1 %天水围: 0.3 %天水围: 0.3 %天津: 1.8 %天津: 1.8 %太原: 0.1 %太原: 0.1 %威海: 0.3 %威海: 0.3 %宁波: 0.4 %宁波: 0.4 %宜春: 0.8 %宜春: 0.8 %常州: 0.9 %常州: 0.9 %常德: 0.3 %常德: 0.3 %平顶山: 0.5 %平顶山: 0.5 %广州: 2.0 %广州: 2.0 %张家口: 1.2 %张家口: 1.2 %徐州: 0.4 %徐州: 0.4 %成都: 2.5 %成都: 2.5 %承德: 0.1 %承德: 0.1 %新乡: 0.1 %新乡: 0.1 %昆明: 1.8 %昆明: 1.8 %晋城: 0.3 %晋城: 0.3 %景德镇: 0.1 %景德镇: 0.1 %朝阳: 0.4 %朝阳: 0.4 %杭州: 2.8 %杭州: 2.8 %柳州: 0.4 %柳州: 0.4 %桂林: 0.1 %桂林: 0.1 %武汉: 3.1 %武汉: 3.1 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泰安: 0.1 %泰安: 0.1 %洛阳: 1.4 %洛阳: 1.4 %济南: 0.7 %济南: 0.7 %济源: 0.3 %济源: 0.3 %海口: 0.1 %海口: 0.1 %淮南: 0.3 %淮南: 0.3 %深圳: 0.7 %深圳: 0.7 %温州: 0.4 %温州: 0.4 %湖州: 0.5 %湖州: 0.5 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.1 %濮阳: 0.1 %珀斯: 0.4 %珀斯: 0.4 %盐城: 0.5 %盐城: 0.5 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.5 %福州: 0.5 %纽约: 0.3 %纽约: 0.3 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 10.8 %芒廷维尤: 10.8 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.1 %苏州: 0.1 %萍乡: 0.1 %萍乡: 0.1 %衢州: 1.4 %衢州: 1.4 %西宁: 3.8 %西宁: 3.8 %西安: 1.2 %西安: 1.2 %运城: 1.2 %运城: 1.2 %遂宁: 0.3 %遂宁: 0.3 %遵义: 0.1 %遵义: 0.1 %郑州: 1.4 %郑州: 1.4 %重庆: 1.7 %重庆: 1.7 %铜陵: 0.1 %铜陵: 0.1 %银川: 0.5 %银川: 0.5 %长春: 0.1 %长春: 0.1 %长沙: 0.7 %长沙: 0.7 %长治: 0.1 %长治: 0.1 %青岛: 0.8 %青岛: 0.8 %首尔特别: 0.3 %首尔特别: 0.3 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他上海上饶东莞临汾保定六安北京北海十堰南京南宁南昌厦门台州合肥吉林呼和浩特哈尔滨嘉兴大理天水围天津太原威海宁波宜春常州常德平顶山广州张家口徐州成都承德新乡昆明晋城景德镇朝阳杭州柳州桂林武汉沈阳沧州泰安洛阳济南济源海口淮南深圳温州湖州漯河濮阳珀斯盐城石家庄福州纽约绍兴芒廷维尤芝加哥苏州萍乡衢州西宁西安运城遂宁遵义郑州重庆铜陵银川长春长沙长治青岛首尔特别香港香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (329) PDF downloads(6) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return