Citation: | GAO Wei, CHEN Yan, YAN Changan, LIU Yong. SOURCE IDENTIFICATION OF PHOSPHORUS IN VARIOUS DISTURBED RIVERS BASED ON LAM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 55-62. doi: 10.13205/j.hjgc.202206007 |
[1] |
倪兆奎,王圣瑞,金相灿,等.云贵高原典型湖泊富营养化演变过程及特征研究[J].环境科学学报, 2011,31(12):2681-2689.
|
[2] |
BOWES M J, SMITH J T, JARVIE H P, et al. Modelling of phosphorus inputs to rivers from diffuse and point sources[J]. Science of the Total Environment, 2008,395(2/3):125-138.
|
[3] |
LIANG Z Y, SORANNO P A, WAGNER T. The role of phosphorus and nitrogen on chlorophyll a:evidence from hundreds of lakes[J]. Water Research, 2020,185:116236.
|
[4] |
秦延文,马迎群,王丽婧,等.长江流域总磷污染:分布特征·来源解析·控制对策[J].环境科学研究, 2018,31(1):9-14.
|
[5] |
牛勇,牛远,王琳杰,等. 2009-2018年太湖大气湿沉降氮磷特征对比研究[J].环境科学研究, 2020,33(1):122-129.
|
[6] |
蔡梅,陆志华,王元元,等.太湖不同介质中磷的污染特征及其治理启示[J].环境科学, 2021.DOI: 10.13227/j.hjkx.202108262
|
[7] |
黄国兰,萧航.化学质量平衡法在水体污染物源解析中的应用[J].环境科学, 1999,20(6):14-17.
|
[8] |
刘京,刘廷良,刘允,等.地表水环境自动监测技术应用与发展趋势[J].中国环境监测, 2017,33(6):1-9.
|
[9] |
BAI H, CHEN Y, WANG Y G, et al. Contribution rates analysis for sources apportionment to special river sections in Yangtze River Basin[J]. Journal of Hydrology, 2021,600:126519.
|
[10] |
叶匡旻,孟凡生,张铃松,等.松花江流域氮时空分布特征及源解析研究[J].环境科学研究, 2020,33(4):901-910.
|
[11] |
纪晓亮,舒烈琳,陈铮,等.楠溪江硝态氮来源定量识别及其不确定性分析[J].中国环境科学, 2021,41(8):3784-3791.
|
[12] |
孙亚乔,王晓冬,校康,等.淡水环境中氮污染同位素示踪的研究进展[J].生态环境学报, 2020,29(8):1693-1702.
|
[13] |
杜展鹏,王明净,严长安,等.基于绝对主成分-多元线性回归的滇池污染源解析[J].环境科学学报, 2020,40(3):1130-1137.
|
[14] |
陈诗文,袁旭音,金晶,等.西苕溪支流河口水体营养盐的特征及源贡献分析[J].环境科学, 2016,37(11):4179-4186.
|
[15] |
BOWES M J, JARVIE H P, NADEN P S, et al. Identifying priorities for nutrient mitigation using river concentration-flow relationships:the Thames basin, UK[J]. Journal of Hydrology, 2014,517:1-12.
|
[16] |
CHEN D J, DAHLGREN R A, LU J. A modified load apportionment model for identifying point and diffuse source nutrient inputs to rivers from stream monitoring data[J]. Journal of Hydrology, 2013,501:25-34.
|
[17] |
GREENE S, TAYLOR D, MCELARNEY Y R, et al. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling[J]. Science of the Total Environment, 2011,409(11):2211-2221.
|
[18] |
CROCKFORD L, O'RIORDAIN S, TAYLOR D, et al. The application of high temporal resolution data in river catchment modelling and management strategies[J]. Environmental Monitoring and Assessment, 2017,189(9):461.
|
[19] |
JARVIE H P, SHARPLEY A N, SCOTT J T, et al. Within-river phosphorus retention:accounting for a missing piece in the watershed phosphorus puzzle[J]. Environmental Science&Technology, 2012,46(24):13284-13292.
|
[20] |
RATTAN K J, BOWES M J, YATES A G, et al. Evaluating diffuse and point source phosphorus inputs to streams in a cold climate region using a load apportionment model[J]. Journal of Great Lakes Research, 2021,47(3):761-772.
|
[21] |
贺克雕,高伟,段昌群,等.滇池、抚仙湖、阳宗海长期水位变化(1988-2015年)及驱动因子[J].湖泊科学, 2019,31(5):1379-1390.
|
[22] |
李蒙,谢国清,鲁韦坤,等.气象条件对滇池水华分布的影响[J].气象科学, 2011,31(5):639-645.
|
[23] |
何云玲,熊巧利,罗贤,等.基于NDVI滇池水华特征的时空变化研究[J].生态环境学报, 2019,28(3):555-563.
|
[24] |
冯秋园,王殊然,刘学勤,等.滇池浮游植物群落结构的时空变化及与环境因子的关系[J].北京大学学报(自然科学版), 2020,56(1):184-192.
|
[25] |
RUNKEL R L, CRAWFORD C G, COHN T A. Load Estimator (LOADEST):A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers[EB/OL].https://pubs.usgs.gov/tm/2005/tm4A5/pdf/508final.pdf. 2021-1-3.
|
[26] |
SHRESTHA S, GUNAWARDANA S K, PIMAN T, et al. Assessment of the impact of climate change and mining activities on streamflow and selected metal's loading in the Chindwin River, Myanmar[J]. Environmental Research, 2020,181:108942.
|
[27] |
GAO J G, WHITE M J, BIEGER K, et al. Design and development of a Python-based interface for processing massive data with the LOAD ESTimator (LOADEST)[J]. Environmental Modelling&Software, 2021,135:104897.
|
[28] |
严长安,杜展鹏,姚波,等.滇池宝象河流域氮磷流失空间格局解析[J].环境科学研究, 2020,33(12):2695-2704.
|
[29] |
金亚楠,张柏发,郝韵,等.基于LOADEST模型和小波变换的河流氮磷污染动态分析[J].浙江农业学报, 2020,32(9):1692-1701.
|
[30] |
程国微,杜展鹏,严长安,等.水质监测频率与极端气候对高原湖泊入湖河流氮磷通量估算的影响[J].环境科学学报, 2020,40(11):3982-3989.
|