Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FANG Li, HE Lijuan, HAO Run, NIE Lei, WANG Hailin. PRIMARY STUDY ON ENVIRONMENTAL IMPACT AND CONTROL MEASURES OF FUGITIVE COAL DUST DURING RAILWAY TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 123-127,147. doi: 10.13205/j.hjgc.202201018
Citation: YIN Fengjun, XU Zeyu, LIU Hong. THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018

THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS

doi: 10.13205/j.hjgc.202206018
  • Received Date: 2021-12-01
    Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • Intelligent control of wastewater treatment is the leading edge in the water pollution control field.The rapid development of artificial intelligence technology injects fresh vitality into the development of wastewater treatment intelligent control.It is strongly desirable to explore a scientific route of combining mechanism and data-driven models to reconstruct the logical mode of wastewater treatment intelligent control system and hence promote its technical development level.This paper proposed a tentative plan of dual-loop logical structure based on the certainty-randomness features of wastewater treatment processes,which is likely to provide a new technical route of wastewater treatment intelligent control through future practice and exploration.First,this paper reviewed the essential factors of wastewater treatment intelligent control and dissected the control role of the mechanism model in the certainty scale,as well as the role of the data-driven model in the randomness scale.Then,a dual-loop logical structure and its control principle combining mechanism and data-driven models were proposed,and the topology in the application of complex wastewater treatment processes was clarified.Finally,a brief perspective centering on the future development of wastewater treatment intelligent control technologies was presented.
  • [1]
    WAHAB N A, KATEBI R, BALDERUD J. Multivariable PID control design for activated sludge process with nitrification and denitrification[J]. Biochemical Engineering Journal, 2009, 45(3):239-248.
    [2]
    HARJA G, NASCU I, MURESAN C, et al. Improvements in dissolved oxygen control of an activated sludge wastewater treatment process[J]. Circuits Systems and Signal Processing, 2016, 35(6):2259-2281.
    [3]
    ARISMENDY L, CARDENAS C, GOMEZ D, et al. A prescriptive intelligent system for an industrial wastewater treatment process:analyzing ph as a first approach[J]. Sustainability-Basel, 2021, 13(8):1-14.
    [4]
    MANESIS S A, SAPIDIS D J, KING R E. Intelligent control of wastewater treatment plants[J]. Artificial Intellgence in Engineering, 1998, 12(3):275-281.
    [5]
    ALAM M, VIDYARATNE L, IFTEKHARUDDIN K M. Novel deep generative simultaneous recurrent model for efficient representation learning[J]. Neural Networks, 2018, 107:12-22.
    [6]
    PANG J W, YANG S S, HE L, et al. Intelligent control/operational strategies in WWTPs through an integrated q-learning algorithm with ASM2d-guided reward[J]. Water, 2019, 11(5):927.
    [7]
    HAN H G, ZHU S G, QIAO J F, et al. Data-driven intelligent monitoring system for key variables in wastewater treatment process[J]. Chinese Journal of Chemical Engineering, 2018, 26(10):2093-2101.
    [8]
    ZHU S G, HAN H G, GUO M, et al. A data-derived soft-sensor method for monitoring effluent total phosphorus[J]. Chinese Journal of Chemical Engineering, 2017, 25(12):1791-1797.
    [9]
    QIAO J F, HU Z Q, LI W J. Soft measurement modeling based on chaos theory for biochemical oxygen demand (BOD)[J]. Water, 2016, 8(12):581.
    [10]
    杜胜利,张庆达,曹博琦,等.城市污水处理过程模型预测控制研究综述[J].信息与控制,2022,51(1):41-53.
    [11]
    XIE W M, ZHANG R, LI W W, et al. Simulation and optimization of a full-scale Carrousel oxidation ditch plant for municipal wastewater treatment[J]. Biochemical Engineering Journal, 2011, 56(1/2):9-16.
    [12]
    FANG F, NI B J, LI W W, et al. A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant[J]. Chemical Engineering Journal, 2011, 174(2/3):635-643.
    [13]
    NI B J, YU H Q, SUN Y J. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules[J]. Water Research, 2008, 42(6/7):1583-1594.
    [14]
    PAN Y T, NI B J, LIU Y W, et al. Modeling of the interaction among aerobic ammonium-oxidizing archaea/bacteria and anaerobic ammonium-oxidizing bacteria[J]. Chemical Engineering Science, 2016, 150:35-40.
    [15]
    LEI L, NI J R. Three-dimensional three-phase model for simulation of hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification in an oxidation ditch[J]. Water Research, 2014, 53:200-214.
    [16]
    NI B J, XIE W M, LIU S G, et al. Modeling and simulation of the sequencing batch reactor at a full-scale municipal wastewater treatment plant[J]. Aiche Journal, 2009, 55(8):2186-2196.
    [17]
    SUN S C, BAO Z Y, LI R Y, et al. Reduction and prediction of N2O emission from an anoxic/oxic wastewater treatment plant upon DO control and model simulation[J]. Bioresource Technology, 2017, 244:800-809.
    [18]
    RAHMATI M G, TISHEHZAN P, MOAZED H. Determining the best and simple intelligent models for evaluating BOD5 of Ahvaz wastewater treatment plant[J]. Desalination and Water Treatment, 2021, 209:242-253.
    [19]
    LIU Y, TUO A X, JIN X J, et al. Quantifying biodegradable organic matter in polluted water on the basis of coulombic yield[J]. Talanta, 2018, 176:485-491.
    [20]
    JIANG Y, YANG X F, LIANG P, et al. Microbial fuel cell sensors for water quality early warning systems:fundamentals, signal resolution, optimization and future challenges[J]. Renew Sust Energ Rev, 2018, 81:292-305.
  • Relative Articles

    [1]GU Xuedian, LIU Dongmei, LI Yuting, ZHANG Shangjun, CHEN Yidi, FENG Yujie, REN Nanqi. RESEARCH ON GREEN AND LOW CARBON TREATMENT PATH OF URBAN WATER POLLUTION IN THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 27-33. doi: 10.13205/j.hjgc.202412004
    [2]WU Jie, YUE Changsheng, LU Guanghua, LIU Changbo, XIA Chun, LIU Shicheng, KANG Yining. CONFORMATION OF HEAVY METAL SPATIAL DISTRIBUTION OF AN IN-PRODUCTION ENTERPRISE IN HUNAN BASED ON VOXLER SIMULATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 178-186. doi: 10.13205/j.hjgc.202406021
    [3]WANG Yongdong, YUAN Ye, LIU Xinyuan, LI Mengting, LIU Qian, WANG Jinhua, MA Jianhong. PPy-MODIFIED ELECTRODE ENHANCING MFC-DRIVEN ELECTROKINETIC REMEDIATION OF URANIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 182-191. doi: 10.13205/j.hjgc.202402022
    [4]WU Mengli, ZHANG Xianghan, WANG Hongyu, XU Dongjian, CHEN Wufen. APPLICATION OF WATER QUANTITY AND QUALITY JOINT CONTROL MODEL IN QIANSHAN RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 160-164. doi: 10.13205/j.hjgc.202311025
    [5]LI Anna, WANG Hui, LIU Qiangnan, LI Taiping. DISTRIBUTION CHARACTERISTICS AND RISK ASSESSMENT OF SOIL POLLUTANTS IN AN EXPLOSION SITE OF A CHEMICAL PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 189-198. doi: 10.13205/j.hjgc.202211027
    [6]QIU Fuguo, TONG Shiyu, WANG Xiaoqian. RESEARCH PROGRESS ON OCCURRENCE STATUS AND ECOLOGICAL HAZARDS OF MICROPLASTICS IN WATER ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 221-228. doi: 10.13205/j.hjgc.202203032
    [7]CAO Feishu, CHEN Jianping, XIE Dongyan, YAN Depeng, LIAO Changjun, SONG Hainong, ZHU Hongxiang, CHEN Guanyi. APPLICATION OF SLURRY BIOREACTOR IN SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 174-181,201. doi: 10.13205/j.hjgc.202204025
    [8]WEI Chao-hai, GUAN Xiang-hong, WEI Geng-rui, LI Ze-min, WEI Tuo, CHEN A-cong. THE NEXUS IMPORTANCE OF AQUEOUS SOLUTION PROPERTIES AND WATER POLLUTION CONTROL PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 28-40. doi: 10.13205/j.hjgc.202111003
    [9]WEI Wen-jing, XIE Bing-geng, ZHOU Kai-chun, LI Xiao-qing. RESEARCH ON TEMPORAL AND SPATIAL VARIATIONS OF ATMOSPHERIC PM2.5 AND PM10 AND THE INFLUENCING FACTORS IN SHANDONG, CHINA DURING 2013—2018[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 103-111. doi: 10.13205/j.hjgc.202012018
    [10]HU Qing, TONG Li-zhi, WANG Hong, GUO Rui-cheng, YANG Gang-ting, XU Sheng-bin. FIELD RAPID SCREENING TECHNOLOGY DRIVEN SOIL SAMPLING OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 163-167,172. doi: 10.13205/j.hjgc.202012027
    [11]XU Wei-tong, WANG Jian-long, WU Yan-jie, LV Yun-jie. ADVANCES IN RESEARCH ON THERMAL POLLUTION CHARACTERISTICS, LOAD ASSESSMENT AND CONTROL MEASURES OF URBAN STORMWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 26-31,58. doi: 10.13205/j.hjgc.202004006
    [14]Xu Wei Li Yong Tang Chuanxiang Chen Xiangbin Li Huijuan Xiong Daowen Yu Shaoqin, . EXPERIMENT OF A NEW AERATION SYSTEM USED IN MBR INTEGRATION EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 10-14. doi: 10.13205/j.hjgc.201510003
    [15]Wang Yayan, Zhang Jiangang, Ni Pengping, Li Mengying, Yu Yingjie, Zhang Lingling, Xu Yuliang, Cai Cong, Xie Liqun. APPLICATION RESEARCHES ON IN-SITU ECOLOGICAL RESTORATION TECHNOLOGY IN POLLUTED URBAN RIVER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 11-16. doi: 10.13205/j.hjgc.201503003
    [16]Liu Peiya, Li Yujiao, Hu Pengjie, Dong Changxun. COLUMN LEACHING OF CADMIUM AND LEAD FROM A CONTAMINATED SOIL USING COMPOSITE LEACHING AGENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 163-167. doi: 10.13205/j.hjgc.201501038
    [18]VARIATION ANALYSIS OF NOISE IN XI'AN FUNCTIONAL AREA FOR YEARS AND RESEARCH ON CONTROL COUNTERMEASURE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 117-119. doi: 10.13205/j.hjgc.201412020
  • Cited by

    Periodical cited type(1)

    1. 赵亚龙,曹瑞. 包神铁路集团煤炭运输抑尘质量提升对策研究. 铁道货运. 2023(08): 37-42 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.2 %FULLTEXT: 14.2 %META: 80.3 %META: 80.3 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.9 %其他: 8.9 %其他: 1.1 %其他: 1.1 %[]: 0.3 %[]: 0.3 %上海: 0.3 %上海: 0.3 %中卫: 0.3 %中卫: 0.3 %临汾: 0.3 %临汾: 0.3 %保定: 0.3 %保定: 0.3 %信阳: 0.3 %信阳: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 3.3 %北京: 3.3 %十堰: 0.6 %十堰: 0.6 %南京: 0.3 %南京: 0.3 %南昌: 0.3 %南昌: 0.3 %台州: 0.3 %台州: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %天津: 1.9 %天津: 1.9 %常德: 0.3 %常德: 0.3 %广州: 1.1 %广州: 1.1 %张家口: 2.2 %张家口: 2.2 %成都: 1.1 %成都: 1.1 %扬州: 0.3 %扬州: 0.3 %昆明: 0.3 %昆明: 0.3 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.6 %杭州: 0.6 %榆林: 0.3 %榆林: 0.3 %武汉: 1.1 %武汉: 1.1 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.6 %洛阳: 0.6 %济源: 0.3 %济源: 0.3 %深圳: 0.8 %深圳: 0.8 %湖州: 0.6 %湖州: 0.6 %漯河: 1.1 %漯河: 1.1 %石家庄: 0.8 %石家庄: 0.8 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.3 %秦皇岛: 0.3 %芒廷维尤: 59.2 %芒廷维尤: 59.2 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.3 %苏州: 0.3 %衢州: 0.3 %衢州: 0.3 %西宁: 1.7 %西宁: 1.7 %西安: 0.3 %西安: 0.3 %贵阳: 0.6 %贵阳: 0.6 %运城: 3.1 %运城: 3.1 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.7 %郑州: 1.7 %重庆: 0.3 %重庆: 0.3 %其他其他[]上海中卫临汾保定信阳兰州北京十堰南京南昌台州哈尔滨天津常德广州张家口成都扬州昆明晋城朝阳杭州榆林武汉沈阳洛阳济源深圳湖州漯河石家庄福州秦皇岛芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (667) PDF downloads(37) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return