Citation: | YIN Fengjun, XU Zeyu, LIU Hong. THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018 |
[1] |
WAHAB N A, KATEBI R, BALDERUD J. Multivariable PID control design for activated sludge process with nitrification and denitrification[J]. Biochemical Engineering Journal, 2009, 45(3):239-248.
|
[2] |
HARJA G, NASCU I, MURESAN C, et al. Improvements in dissolved oxygen control of an activated sludge wastewater treatment process[J]. Circuits Systems and Signal Processing, 2016, 35(6):2259-2281.
|
[3] |
ARISMENDY L, CARDENAS C, GOMEZ D, et al. A prescriptive intelligent system for an industrial wastewater treatment process:analyzing ph as a first approach[J]. Sustainability-Basel, 2021, 13(8):1-14.
|
[4] |
MANESIS S A, SAPIDIS D J, KING R E. Intelligent control of wastewater treatment plants[J]. Artificial Intellgence in Engineering, 1998, 12(3):275-281.
|
[5] |
ALAM M, VIDYARATNE L, IFTEKHARUDDIN K M. Novel deep generative simultaneous recurrent model for efficient representation learning[J]. Neural Networks, 2018, 107:12-22.
|
[6] |
PANG J W, YANG S S, HE L, et al. Intelligent control/operational strategies in WWTPs through an integrated q-learning algorithm with ASM2d-guided reward[J]. Water, 2019, 11(5):927.
|
[7] |
HAN H G, ZHU S G, QIAO J F, et al. Data-driven intelligent monitoring system for key variables in wastewater treatment process[J]. Chinese Journal of Chemical Engineering, 2018, 26(10):2093-2101.
|
[8] |
ZHU S G, HAN H G, GUO M, et al. A data-derived soft-sensor method for monitoring effluent total phosphorus[J]. Chinese Journal of Chemical Engineering, 2017, 25(12):1791-1797.
|
[9] |
QIAO J F, HU Z Q, LI W J. Soft measurement modeling based on chaos theory for biochemical oxygen demand (BOD)[J]. Water, 2016, 8(12):581.
|
[10] |
杜胜利,张庆达,曹博琦,等.城市污水处理过程模型预测控制研究综述[J].信息与控制,2022,51(1):41-53.
|
[11] |
XIE W M, ZHANG R, LI W W, et al. Simulation and optimization of a full-scale Carrousel oxidation ditch plant for municipal wastewater treatment[J]. Biochemical Engineering Journal, 2011, 56(1/2):9-16.
|
[12] |
FANG F, NI B J, LI W W, et al. A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant[J]. Chemical Engineering Journal, 2011, 174(2/3):635-643.
|
[13] |
NI B J, YU H Q, SUN Y J. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules[J]. Water Research, 2008, 42(6/7):1583-1594.
|
[14] |
PAN Y T, NI B J, LIU Y W, et al. Modeling of the interaction among aerobic ammonium-oxidizing archaea/bacteria and anaerobic ammonium-oxidizing bacteria[J]. Chemical Engineering Science, 2016, 150:35-40.
|
[15] |
LEI L, NI J R. Three-dimensional three-phase model for simulation of hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification in an oxidation ditch[J]. Water Research, 2014, 53:200-214.
|
[16] |
NI B J, XIE W M, LIU S G, et al. Modeling and simulation of the sequencing batch reactor at a full-scale municipal wastewater treatment plant[J]. Aiche Journal, 2009, 55(8):2186-2196.
|
[17] |
SUN S C, BAO Z Y, LI R Y, et al. Reduction and prediction of N2O emission from an anoxic/oxic wastewater treatment plant upon DO control and model simulation[J]. Bioresource Technology, 2017, 244:800-809.
|
[18] |
RAHMATI M G, TISHEHZAN P, MOAZED H. Determining the best and simple intelligent models for evaluating BOD5 of Ahvaz wastewater treatment plant[J]. Desalination and Water Treatment, 2021, 209:242-253.
|
[19] |
LIU Y, TUO A X, JIN X J, et al. Quantifying biodegradable organic matter in polluted water on the basis of coulombic yield[J]. Talanta, 2018, 176:485-491.
|
[20] |
JIANG Y, YANG X F, LIANG P, et al. Microbial fuel cell sensors for water quality early warning systems:fundamentals, signal resolution, optimization and future challenges[J]. Renew Sust Energ Rev, 2018, 81:292-305.
|