Citation: | RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019 |
[1] |
ILOMS E, OLOLADE O O, OGOLA H J O, et al. Investigating industrial effluent impact on municipal wastewater treatment plant in Vaal, South Africa[J]. International Journal of Environmental Research and Public Health, 2020, 17(3):1096.
|
[2] |
NOURANI V, ELKIRAN G, ABBA S. Wastewater treatment plant performance analysis using artificial intelligence-an ensemble approach[J]. Water Science and Technology, 2018, 78(10):2064-2076.
|
[3] |
黄道平,邱禹,刘乙奇,等.面向污水处理的数据驱动故障诊断及预测方法综述[J].华南理工大学学报(自然科学版), 2015, 43(3):111-120.
|
[4] |
DAIGAVANE V V, GAIKWAD M. Water quality monitoring system based on IoT[J]. Advances in Wireless and Mobile Communications, 2017, 10(5):1107-1116.
|
[5] |
VIJAYAKUMAR N, RAMYA R. The real time monitoring of water quality in IoT environment[C]//2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). Coimbatore, India:IEEE, 2015:1-5.
|
[6] |
KODITALA N K, PANDEY P S. Water quality monitoring system using IoT and machine learning[C]//2018 International Conference on Research in Intelligent and Computing in Engineering (RICE). San Salvador:IEEE, 2018:1-5.
|
[7] |
何清,李宁,罗文娟,等.大数据下的机器学习算法综述[J].模式识别与人工智能, 2014, 27(4):327-336.
|
[8] |
MJALLI F S, AL-ASHEH S, ALFADALA H. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance[J]. Journal of Environmental Management, 2007, 83(3):329-338.
|
[9] |
ZHONG S F, ZHANG K, BAGHERI M, et al. Machine learning:new ideas and tools in environmental science and engineering[J]. Environmental Science&Technology, 2021, 55(19):12741-12754.
|
[10] |
JORDAN M I, MITCHELL T M. Machine learning:trends, perspectives, and prospects[J]. Science, 2015, 349(6245):255-260.
|
[11] |
CABITZA F, BANFI G. Machine learning in laboratory medicine:waiting for the flood?[J]. Clinical Chemistry and Laboratory Medicine (CCLM), 2018, 56(4):516-524.
|
[12] |
BERRY M W, MOHAMED A, YAP B W. Supervised and unsupervised learning for data science[M]. Springer, 2019:22-23.
|
[13] |
YOON H, JUN S C, HYUN Y, et al. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer[J]. Journal of Hydrology, 2011, 396(1/2):128-138.
|
[14] |
GOVINDARAJU R S. Artificial neural networks in hydrology. Ⅱ:hydrologic applications[J]. Journal of Hydrologic Engineering, 2000, 5(2):124-137.
|
[15] |
GUO H, JEONG K, LIM J, et al. Prediction of effluent concentration in a wastewater treatment plant using machine learning models[J]. Journal of Environmental Sciences, 2015, 32:90-101.
|
[16] |
TRICHAKIS I C, NIKOLOS I K, KARATZAS G. Artificial neural network (ANN) based modeling for karstic groundwater level simulation[J]. Water Resources Management, 2011, 25(4):1143-1152.
|
[17] |
MUTTIL N, CHAU K W. Neural network and genetic programming for modelling coastal algal blooms[J]. International Journal of Environment and Pollution, 2006, 28(3/4):223-238.
|
[18] |
LEE E, SEONG C, KIM H, et al. Predicting the impacts of climate change on nonpoint source pollutant loads from agricultural small watershed using artificial neural network[J]. Journal of Environmental Sciences, 2010, 22(6):840-845.
|
[19] |
ZARE A, OZDEMIR A, IWEN M A, et al. Extension of PCA to higher order data structures:an introduction to tensors, tensor decompositions, and tensor PCA[J]. Proceedings of the IEEE, 2018, 106(8):1341-1358.
|
[20] |
NA S, LIU X M, YONG G. Research on k-means clustering algorithm:an improved k-means clustering algorithm[C]//2010 Third International Symposium on Intelligent Information Technology and Security Informatics. Jian, China:Ieee, 2010:63-67.
|
[21] |
ZHOU Z H. A brief introduction to weakly supervised learning[J]. National Science Review, 2017, 5(1):44-53.
|
[22] |
PANG J W, YANG S S, HE L, et al. An influent responsive control strategy with machine learning:Q-learning based optimization method for a biological phosphorus removal system[J]. Chemosphere, 2019, 234:893-901.
|
[23] |
GRANATA F, PAPIRIO S, ESPOSITO G, et al. Machine learning algorithms for the forecasting of wastewater quality indicators[J]. Water, 2017, 9(2):105.
|
[24] |
HAMED M M, KHALAFALLAH M G, HASSANIEN E A. Prediction of wastewater treatment plant performance using artificial neural networks[J]. Environmental Modelling&Software, 2004, 19(10):919-928.
|
[25] |
BAGHERI M, MIRBAGHERI S A, BAGHERI Z, et al. Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach[J]. Process Safety and Environmental Protection, 2015, 95:12-25.
|
[26] |
李晓东,曾光明,蒋茹,等.改进支持向量机对污水处理厂运行状况的故障诊断[J].湖南大学学报(自然科学版), 2007,34(12):68-71.
|
[27] |
LEE M W, HONG S H, CHOI H, et al. Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors[J]. Process Biochemistry, 2008, 43(10):1107-1113.
|
[28] |
陆林花.聚类算法及其在污水处理工艺故障诊断中应用的研究[D].重庆:重庆大学, 2007.
|
[29] |
DOVŽAN D, LOGAR V,ŠKRJANC I. Implementation of an evolving fuzzy model (eFuMo) in a monitoring system for a waste-water treatment process[J]. IEEE Transactions on Fuzzy Systems, 2014, 23(5):1761-1776.
|
[30] |
IZQUIERDO J, LÓPEZ P A, MARTÍNEZ F J, et al. Fault detection in water supply systems using hybrid (theory and data-driven) modelling[J]. Mathematical and Computer Modelling, 2007, 46(3/4):341-350.
|
[31] |
岳宇飞,罗健旭.一种改进的SOM神经网络在污水处理故障诊断中的应用[J].华东理工大学学报, 2017,43(3):389-396.
|
[32] |
LIUKKONEN M, LAAKSO I, HILTUNEN Y. Advanced monitoring platform for industrial wastewater treatment:multivariable approach using the self-organizing map[J]. Environmental Modelling&Software, 2013, 48:193-201.
|
[33] |
BERNARDELLI A, MARSILI-Libelli S, MANZINI A, et al. Real-time model predictive control of a wastewater treatment plant based on machine learning[J]. Water Science and Technology, 2020, 81(11):2391-2400.
|
[34] |
ICKE O, VAN ES D M, DE KONING M F, et al. Performance improvement of wastewater treatment processes by application of machine learning[J]. Water Science and Technology, 2020, 82(12):2671-2680.
|
[35] |
SYAFIIE S, TADEO F, MARTINEZ E, et al. Model-free control based on reinforcement learning for a wastewater treatment problem[J]. Applied Soft Computing, 2011, 11(1):73-82.
|
[36] |
de CANETE J F, DEL SAZ-OROZCO P, BARATTI R, et al. Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network[J]. Expert Systems with Applications, 2016, 63:8-19.
|
[37] |
HERNANDEZ-DEL-OLMO F, GAUDIOSO E, DURO N, et al. Machine learning weather soft-sensor for advanced control of wastewater treatment plants[J]. Sensors, 2019, 19(14):3139.
|
[38] |
FERNANDEZ DE CANETA J, DEL SAZ-OROZCO P, GÓMEZ-DE-GABRIEL J, et al. Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach[J]. Computers&Chemical Engineering, 2021, 144:107-146.
|
[39] |
SUNDUI B, CALDERON O A R, ABDELDAYEM O M, et al. Applications of machine learning algorithms for biological wastewater treatment:updates and perspectives[J]. Clean Technologies and Environmental Policy, 2021,23:127-143.
|
[40] |
VUJNOVIĆ G, PERIŠIĆ J, BOŽILOVIĆZ, et al. using scada system for process control in water industry[J]. Acta Technica Corviniensis-Bulletin of Engineering, 2019, 12(2):67-72.
|
[41] |
WANG T, SUN J, ZHANG W, et al. Prediction of product formation in 2-keto-l-gulonic acid fermentation through Bayesian combination of multiple neural networks[J]. Process Biochemistry, 2014, 49(2):188-194.
|
[42] |
HAN H G, QIAO J F. Prediction of activated sludge bulking based on a self-organizing RBF neural network[J]. Journal of Process Control, 2012, 22(6):1103-1112.
|
[43] |
VENKATASUBRAMANIAN V, RENGASWAMY R, YIN K, et al. A review of process fault detection and diagnosis:Part I:quantitative model-based methods[J]. Computers&Chemical Engineering, 2003, 27(3):293-311.
|
[44] |
蒋美迪.污水处理异常诊断智能算法及其应用研究[D].长春:吉林大学, 2015.
|
[45] |
刘俊,梁炎明,尤海生.基于Lasso回归的污水处理设备故障诊断系统及方法:CN110320892A[P]. 2019.
|
[46] |
肖红军,刘乙奇,黄道平.面向污水处理的动态变分贝叶斯混合因子故障诊断[J].控制理论与应用, 2016, 33(11):1519-1526.
|
[47] |
TAO E, SHEN W, LIU T, et al. Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 128:49-55.
|
[48] |
AHMED M, MAHMOOD A N, HU J. A survey of network anomaly detection techniques[J]. Journal of Network and Computer Applications, 2016, 60:19-31.
|
[49] |
HASAN J, GOLDBLOOM-Helzner D, ICHIDA A, et al. Technologies and techniques for early warning systems to monitor and evaluate drinking water quality:a state-of-the-art review[Z]. United States Environmental Protection Agency, 2005:106-114.
|
[50] |
GUPTA S, AGA D, PRUDEN A, et al. Data analytics for environmental science and engineering research[J]. Environmental Science&Technology, 2021, 55(16):10895-10907.
|
[51] |
PAUL R, KENWAY S, MUKHEIBIR P. How scale and technology influence the energy intensity of water recycling systems:an analytical review[J]. Journal of Cleaner Production, 2019, 215:1457-1480.
|
[52] |
BUTLER D, SCHVTZE M. Integrating simulation models with a view to optimal control of urban wastewater systems[J]. Environmental Modelling&Software, 2005, 20(4):415-426.
|
[53] |
HEO S, NAM K, TARIQ S, et al. A hybrid machine learning-based multi-objective supervisory control strategy of a full-scale wastewater treatment for cost-effective and sustainable operation under varying influent conditions[J]. Journal of Cleaner Production, 2021, 291:125853.
|
[54] |
MERCIER T, DEMBELE A, DENOEUX T, et al. machine learning as a decision support tool for wastewater treatment plant operation[J]. WIT Transactions on Ecology and the Environment, 2019, 229:103-107.
|
[55] |
HERNANDEZ-DEL-OLMO F, GAUDIOSO E, NEVADO A. Autonomous adaptive and active tuning up of the dissolved oxygen setpoint in a wastewater treatment plant using reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, 42(5):768-774.
|
[56] |
HERNÁNDEZ-DEL-OLMO F, GAUDIOSO E, DORMIDO R, et al. Energy and environmental efficiency for the N-ammonia removal process in wastewater treatment plants by means of reinforcement learning[J]. Energies, 2016, 9(9):755.
|
[57] |
CHOI D J, PARK H. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process[J]. Water Research, 2001, 35(16):3959-3967.
|
[58] |
VANROLLEGHEM P A. Models in advanced wastewater treatment plant control[C]//Proceedings Colloque Automatique et Agronomie, Montpellier, France. 2003:26.
|
[59] |
HOLENDA B, DOMOKOS E, REDEY A, et al. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control[J]. Computers&Chemical Engineering, 2008, 32(6):1270-1278.
|
[60] |
HAN H G, QIAO J F, CHEN Q L. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network[J]. Control Engineering Practice, 2012, 20(4):465-476.
|
[61] |
叶洪涛,罗飞,许玉格,等.基于免疫优化PID神经网络的污水处理系统解耦控制[J].计算机应用研究, 2011, 28(11):4097-4099.
|
[62] |
PIOTROWSKI R. Comparison of two nonlinear predictive control algorithms for dissolved oxygen tracking problem at wwtp[J]. Journal of Automation Mobile Robotics and Intelligent Systems, 2016, 10(1):8-16.
|
[63] |
SYAH R, AL-KHOWARIZMI A, ELVENY M, et al. Machine learning based simulation of water treatment using LDH/MOF nanocomposites[J]. Environmental Technology&Innovation, 2021, 23:101805.
|
[64] |
CAI W F, LONG F, WANG Y H, et al. Enhancement of microbiome management by machine learning for biological wastewater treatment[J]. Microbial Biotechnology, 2021, 14(1):59-62.
|
[65] |
TORREGROSSA D, LEOPOLD U, HERNÁNDEZ-SANCHO F, et al. Machine learning for energy cost modelling in wastewater treatment plants[J]. Journal of environmental management, 2018, 223:1061-1067.
|
[66] |
OH S, KIM Y. Machine learning application reveal dynamic interaction of polyphosphate-accumulating organism in full-scale wastewater treatment plant[J]. Journal of Water Process Engineering, 2021, 44:102417.
|
[67] |
BAGHERZADEH F, MEHRANI M J, BASIRIFARD M, et al. Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance[J]. Journal of Water Process Engineering, 2021, 41:102033.
|
[68] |
赖春伶.基于不平衡污水处理数据的故障诊断研究及软件开发[D].广州:华南理工大学, 2019.
|