Citation: | LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023 |
[1] |
JORDAN M I, MITCHELL T M. Machine learning:trends, perspectives, and prospects[J]. Science, 2015, 349(6245):255-260.
|
[2] |
YAN X L, SEDYKH A, WANG W Y, et al. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations[J]. Nature Communications, 2020, 11(1):2519.
|
[3] |
BUTLER K T, DAVIES D W, CARTWRWRIGHT H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715):547-555.
|
[4] |
MITCHELL T M. Machine Learning[M]. London:McGraw-Hill Education-Eroupe, 1997.
|
[5] |
MASSIMO B, DAVIDE M, MATTIA N, et al. Machine learning in manufacturing and industry 4.0 applications[J]. International Journal of Production Research, 2021, 59(16):4773-4778.
|
[6] |
ZHANG S W. Application of machine learning in animal disease analysis and prediction[J]. Current Bioinformatics, 2021, 16(7):972-982.
|
[7] |
ROBERT J M, STEPHEN R G, CRAIG G N, et al. Applying machine learning to agricultural data[J]. Computers and Electronics in Agriculture, 1995, 4(12):275-293.
|
[8] |
FANG J, SWAIN A, UNNI R, et al. Decoding optical data with machine learning[J]. Laser&Photonics Reviews, 2020, 15(2):2000422.
|
[9] |
ZHONG S F, ZHANG K, BAGHERI M, et al. Machine learning:new ideas and tools in environmental science and engineering[J]. Environmental Science&Technology, 2021, 55(19):12741-12754.
|
[10] |
LONG F, WANG L G, CAI W F, et al. Predicting the performance of anaerobic digestion using machine learning algorithms and genomic data[J]. Water Research, 2021, 199:117182.
|
[11] |
HUANG R X, MA C X, MA J, et al. Machine learning in natural and engineered water systems[J]. Water Research, 2021, 205:117666.
|
[12] |
OBENG-GYAS E, ROOSTAEI J, GIBSON J M. Lead distribution in urban soil in a medium-sized city:household-scale analysis[J]. Environmental Science&Technology, 2021, 55(6):3696-3705.
|
[13] |
TAPAVICZA E, RUDORFF G F, DAVID O D H, et al. Elucidating an atmospheric brown carbon species-Toward supplanting chemical intuition with exhaustive enumeration and machine learning[J]. Environmental Science&Technology, 2021, 55(12):8447-8457.
|
[14] |
ZHU J J, CHEN Y C, SHIE R H, et al. Predicting carbonaceous aerosols and identifying their source contribution with advanced approaches[J]. Chemosphere, 2021, 266:128966.
|
[15] |
KUSDHANY M I M, STEPHEN M L. New insights into hydrogen uptake on porous carbon materials via explainable machine learning[J]. Carbon, 2021, 179:190-201.
|
[16] |
ZHANG K, ZHONG S F, ZHANG H C. Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning[J]. Environmental Science&Technology, 2020, 54(11):7008-7018.
|
[17] |
MORTAZAVI B, RAJABPOUR A, ZHUANG X Y, et al. Exploring thermal expansion of carbon-based nanosheets by machine-learning interatomic potentials[J]. Carbon, 2022, 186:501-508.
|
[18] |
CHENG Q, BEN M, DANIEL H, et al. A comprehensive assessment of empirical potentials for carbon materials[J]. APL Materials, 2021, 9(6):061102.
|
[19] |
LUO Q X, HOLM E A, WANG C. A transfer learning approach for improved classification of carbon nanomaterials from TEM images[J]. Nanoscale Advances, 2021,3:206-213.
|
[20] |
MASTON T, FARFEL M, LEVIN N, et al. Machine learning and computer vision for the classification of carbon nanotube and nanofiber structures from transmission electron microscopy data[J]. Microscopy and Microanalysis, 2019, 25(S2):198-199.
|
[21] |
DERINGER V L, MERLET C, HU Y C, et al. Towards an atomistic understanding of disordered carbon electrode materials†[J]. Chemical Communications, 2018,54:5988-5991.
|
[22] |
ANJA A, VOLKER L D, SAMI S, et al. Understanding X-ray spectroscopy of carbonaceous materials by combining experiments, density functional theory, and machine learning. Part Ⅰ:Fingerprint Spectra[J]. Chemistry of Materials, 2019, 31(22):9243-9255.
|
[23] |
ANJA A, VOLKER L D, SAMI S, et al. Understanding X-ray spectroscopy of carbonaceous materials by combining experiments, density functional theory, and machine learning. Part Ⅱ:Quantitative Fitting of Spectra[J]. Chemistry of Materials, 2019, 31(22):9256-9267.
|
[24] |
TESSONNIER J P, SU D S. Recent progress on the growth mechanism of carbon nanotubes:a review[J]. ChemSusChem, 2011, 4(7):824-847.
|
[25] |
BECKHAM J L, WYSS K M, XIE Y C, et al. Machine learning guided synthesis of flash graphene[J]. Advanced Materials, 2022, 34(12):2106506.
|
[26] |
YU Z C, HUANG W M. Accelerating optimizing the design of carbon-based electrocatalyst via machine learning[J]. Electroanalysis, 2021, 33:1-10.
|
[27] |
何峰,张静静,陈奕君,等.电化学氧还原反应合成H2O2碳基催化剂研究进展[J].储能科学与技术, 2021, 10(6):1963-1976.
|
[28] |
HAN Y, TANG B J, WANG L, et al. Machine-learning-driven synthesis of carbon dots with enhanced quantum yields[J]. ACS Nano, 2020, 14(11):14761-14768.
|
[29] |
KUHN M, JOHNSON K. Applied Predictive Modeling[M]. Springer, 2013.
|
[30] |
SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):60.
|
[31] |
VARMA S, SIMON R. Bias in error estimation when using cross-validation for model selection[J]. BMC Bioinformatics, 2006, 7(1):91.
|
[32] |
BVHLMANN P, GEER S V. Statistics for high-dimensional data:methods, theory and applications[M]. Springer Science&Business Media, 2011.
|
[33] |
REXSTAD E, INNIS G S. Model simplification-three applications[J]. Ecological Modelling, 1985, 27(1/2):1-13.
|
[34] |
YAO Y, ROSASCO L, CAPONNETTO A. On early stopping in gradient descent learning[J]. Constructive Approximation, 2007, 26(2):289-315.
|