Citation: | HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024 |
[1] |
LIU Q S, JIANG Y F, JIN K, et al. 18% efficiency organic solar cells[J]. Science Bulletin, 2020, 65(4):272-275.
|
[2] |
LI C, ZHOU J D, SONG J L, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells[J]. Nature Energy, 2021, 6(6):605-613.
|
[3] |
CAI Y, LI Y, WANG R, et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%[J]. Advanced Materials, 2021, 33(33):e2101733.
|
[4] |
YAN J C, YAN X L, HU S, et al. Comprehensive interrogation on acetylcholinesterase inhibition by ionic liquids using machine learning and molecular modeling[J]. Environmental Science&Technology, 2021, 55(21):14720-14731.
|
[5] |
YAN X L, SEDYKH A, WANG W Y, et al. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations[J]. Nature Communications, 2020, 11(1):2519.
|
[6] |
YAN X L, ZHANG J, RUSSO D P, et al. Prediction of nano-bio interactions through convolutional neural network analysis of nanostructure images[J]. ACS Sustainable Chemistry&Engineering, 2020, 8(51):19096-19104.
|
[7] |
NAGASAWA S, AL-NAAMANI E, SAEKI A. Computer-aided screening of conjugated polymers for organic solar cell:classification by random forest[J]. The Journal of Physical Chemistry Letters, 2018, 9(10):2639-2646.
|
[8] |
SAHU H, RAO W N, TROISI A, et al. Toward predicting efficiency of organic solar cells via machine learning and improved descriptors[J]. Advanced Energy Materials, 2018, 8(24):1801032.
|
[9] |
SUN W B, ZHENG Y J, YANG K, et al. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials[J]. Science Advances, 2019,5(11):eaay4275.
|
[10] |
HACHMANN J, OLIVARES-AMAYA R, ATAHAN-EVRENK S, et al. The harvard clean energy project:large-scale computational screening and design of organic photovoltaics on the world community grid[J]. Journal of Physical Chemistry Letters, 2011, 2(17):2241-2251.
|
[11] |
SCHARBER M C, MVHLBACHER D, KOPPE M, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency[J]. Advanced Materials, 2006, 18(6):789-794.
|
[12] |
SUN W B, LI M, LI Y, et al. The use of deep learning to fast evaluate organic photovoltaic materials[J]. Advanced Theory and Simulations, 2019, 2(1):1800116.
|
[13] |
张珂,冯晓晗,郭玉荣,等.图像分类的深度卷积神经网络模型综述[J].中国图象图形学报, 2021, 26(10):2305-2325.
|
[14] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Arxiv,2014,abs/1409.1556.
|
[15] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:2261-2269.
|
[16] |
杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用, 2018, 38(增刊2):1-6,26.
|
[17] |
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Arxiv, 2014,sbs/1412.3555..
|
[18] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
|
[19] |
毕常遥,袁晓彤.基于Adam局部优化的分布式近似牛顿深度学习模型训练[J].计算机应用与软件, 2021, 38(10):278-283.
|
[20] |
王健宗,孔令炜,黄章成,等.图神经网络综述[J].计算机工程, 2021, 47(4):12.
|
[21] |
XIONG Z P, WANG D Y, LIU X H, et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism[J]. Journal of Medicinal Chemistry, 2020, 63(16):8749-8760.
|
[22] |
DAVID W. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules[J]. Journal of Chemical Information&Computer Sciences, 1988, 28(1):31-36.
|
[23] |
BAGHER A M. Comparison of organic solar cells and inorganic solar cells[J]. International Journal of Sustainable and Green Energy, 2014, 3(3):53-58.
|
[1] | WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009 |
[2] | HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008 |
[3] | WANG Kaihan, YANG Qing, LIU Xiuhong, WANG Jingfan. RESEARCH PROGRESS ON POLLUTION AND CONTROL OF SEWAGE SOURCE HEAT PUMP HEAT EXCHANGER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 72-77. doi: 10.13205/j.hjgc.202408009 |
[4] | PENG Di, WANG Shuaibin, MA Dong, JI Liang, WANG Junfang, YIN Hang. SCENARIO ANALYSIS OF HYDROFLUOROCARBONS EMISSION REDUCTION AND CONTROL STRATEGY FOR CHINA’S MOBILE AIR-CONDITIONING SECTOR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 233-242. doi: 10.13205/j.hjgc.202403029 |
[5] | WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017 |
[6] | MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014 |
[7] | REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023 |
[8] | CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006 |
[9] | XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022 |
[10] | XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014 |
[11] | HUANG Yanpeng, WANG Yuanhao, WANG Chao, LIU Weijiang, WANG Hong, LV Guangfeng, LIN Sijie, HU Qing. CHARACTERISTICS ANALYSIS AND ZONING CONTROL OF GROUNDWATER POLLUTION BASED ON SELF-ORGANIZING MAPS AND K-MEANS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 31-41,47. doi: 10.13205/j.hjgc.202206004 |
[12] | DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006 |
[13] | LI Han-fei, WU Wei, BAI Lu-lu. FUNDAMENTAL RESEARCH ON CO2 CATALYTIC SYNTHESIS OF DERIVATIVE DIESEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 1-8. doi: 10.13205/j.hjgc.202209001 |
[14] | RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019 |
[15] | WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017 |
[16] | XUE Chengjie, FANG Zhanqiang. PATH OF CARBON EMISSION PEAKING AND CARBON NEUTRALITY IN SOIL REMEDIATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 231-238. doi: 10.13205/j.hjgc.202208033 |
[17] | HU Xiangang, LI Jiawei, LI Jiaqiang, JIN Hongye, YU Fubo. SCIENTIFIC QUESTIONS ON THE BIOLOGICAL EFFECTS OF NANOMATERIALS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 171-181. doi: 10.13205/j.hjgc.202206022 |
[18] | LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023 |
[19] | LI Zhi-sheng, LIANG Xi-guan, JIN Yu-kai, ZHANG Hua-gang, OU Yao-chun. A COMPARATIVE STUDY ON EDICTIVE EFFECT OF PM2.5 IN BEIJING BASED ON TREE MODELS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 106-113. doi: 10.13205/j.hjgc.202106016 |
[20] | HE Zhe-xiang, LI Lei. AN AIR POLLUTANT CONCENTRATION PREDICTION MODEL BASED ON WAVELET TRANSFORM AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 111-119. doi: 10.13205/j.hjgc.202103016 |
1. | 董晓冬,陈丽红,林芙,李惠平,黄慧. 基于机器学习的碳基材料对水中四环素吸附预测研究. 环境科学与管理. 2024(02): 75-80 . ![]() |