Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024
Citation: HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024

PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING

doi: 10.13205/j.hjgc.202206024
  • Received Date: 2022-02-23
    Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • Under the context of carbon neutrality,there is an urgent need to develop high-efficiency and clean energy to reduce the dependence on petrochemical energy.As a material that can directly convert solar energy or other light energy into electrical energy,organic photovoltaic materials have become an increasingly promising low-carbon energy material with great application prospects.In the process of exploring high-performance organic photovoltaic materials,although machine learning can improve the efficiency of material design,its predictive ability is still greatly restricted by the development and selection of descriptors.In the present study,the authors applied recurrent neural network,convolutional neural network,and graph neural network to build end-to-end deep learning models to predict the photoelectric conversion efficiency,and the constructed models could directly extract chemical features from SMILES symbols,molecular images,and molecular graph networks without the need of descriptors calculation and selection.The resulted models could not only accurately predict the photoelectric conversion efficiency of organic photovoltaic materials (the optimal model obtained R2>0.73 for both 5-fold cross validation and external validation),but also identify the key structural features that affect the conversion efficiency.The results could provide theoretical guidance for the design of new environmental functional materials.
  • [1]
    LIU Q S, JIANG Y F, JIN K, et al. 18% efficiency organic solar cells[J]. Science Bulletin, 2020, 65(4):272-275.
    [2]
    LI C, ZHOU J D, SONG J L, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells[J]. Nature Energy, 2021, 6(6):605-613.
    [3]
    CAI Y, LI Y, WANG R, et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%[J]. Advanced Materials, 2021, 33(33):e2101733.
    [4]
    YAN J C, YAN X L, HU S, et al. Comprehensive interrogation on acetylcholinesterase inhibition by ionic liquids using machine learning and molecular modeling[J]. Environmental Science&Technology, 2021, 55(21):14720-14731.
    [5]
    YAN X L, SEDYKH A, WANG W Y, et al. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations[J]. Nature Communications, 2020, 11(1):2519.
    [6]
    YAN X L, ZHANG J, RUSSO D P, et al. Prediction of nano-bio interactions through convolutional neural network analysis of nanostructure images[J]. ACS Sustainable Chemistry&Engineering, 2020, 8(51):19096-19104.
    [7]
    NAGASAWA S, AL-NAAMANI E, SAEKI A. Computer-aided screening of conjugated polymers for organic solar cell:classification by random forest[J]. The Journal of Physical Chemistry Letters, 2018, 9(10):2639-2646.
    [8]
    SAHU H, RAO W N, TROISI A, et al. Toward predicting efficiency of organic solar cells via machine learning and improved descriptors[J]. Advanced Energy Materials, 2018, 8(24):1801032.
    [9]
    SUN W B, ZHENG Y J, YANG K, et al. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials[J]. Science Advances, 2019,5(11):eaay4275.
    [10]
    HACHMANN J, OLIVARES-AMAYA R, ATAHAN-EVRENK S, et al. The harvard clean energy project:large-scale computational screening and design of organic photovoltaics on the world community grid[J]. Journal of Physical Chemistry Letters, 2011, 2(17):2241-2251.
    [11]
    SCHARBER M C, MVHLBACHER D, KOPPE M, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency[J]. Advanced Materials, 2006, 18(6):789-794.
    [12]
    SUN W B, LI M, LI Y, et al. The use of deep learning to fast evaluate organic photovoltaic materials[J]. Advanced Theory and Simulations, 2019, 2(1):1800116.
    [13]
    张珂,冯晓晗,郭玉荣,等.图像分类的深度卷积神经网络模型综述[J].中国图象图形学报, 2021, 26(10):2305-2325.
    [14]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Arxiv,2014,abs/1409.1556.
    [15]
    HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:2261-2269.
    [16]
    杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用, 2018, 38(增刊2):1-6,26.
    [17]
    CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Arxiv, 2014,sbs/1412.3555..
    [18]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
    [19]
    毕常遥,袁晓彤.基于Adam局部优化的分布式近似牛顿深度学习模型训练[J].计算机应用与软件, 2021, 38(10):278-283.
    [20]
    王健宗,孔令炜,黄章成,等.图神经网络综述[J].计算机工程, 2021, 47(4):12.
    [21]
    XIONG Z P, WANG D Y, LIU X H, et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism[J]. Journal of Medicinal Chemistry, 2020, 63(16):8749-8760.
    [22]
    DAVID W. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules[J]. Journal of Chemical Information&Computer Sciences, 1988, 28(1):31-36.
    [23]
    BAGHER A M. Comparison of organic solar cells and inorganic solar cells[J]. International Journal of Sustainable and Green Energy, 2014, 3(3):53-58.
  • Relative Articles

    [1]WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009
    [2]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [3]WANG Kaihan, YANG Qing, LIU Xiuhong, WANG Jingfan. RESEARCH PROGRESS ON POLLUTION AND CONTROL OF SEWAGE SOURCE HEAT PUMP HEAT EXCHANGER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 72-77. doi: 10.13205/j.hjgc.202408009
    [4]PENG Di, WANG Shuaibin, MA Dong, JI Liang, WANG Junfang, YIN Hang. SCENARIO ANALYSIS OF HYDROFLUOROCARBONS EMISSION REDUCTION AND CONTROL STRATEGY FOR CHINA’S MOBILE AIR-CONDITIONING SECTOR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 233-242. doi: 10.13205/j.hjgc.202403029
    [5]WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
    [6]MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014
    [7]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [8]CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006
    [9]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [10]XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
    [11]HUANG Yanpeng, WANG Yuanhao, WANG Chao, LIU Weijiang, WANG Hong, LV Guangfeng, LIN Sijie, HU Qing. CHARACTERISTICS ANALYSIS AND ZONING CONTROL OF GROUNDWATER POLLUTION BASED ON SELF-ORGANIZING MAPS AND K-MEANS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 31-41,47. doi: 10.13205/j.hjgc.202206004
    [12]DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
    [13]LI Han-fei, WU Wei, BAI Lu-lu. FUNDAMENTAL RESEARCH ON CO2 CATALYTIC SYNTHESIS OF DERIVATIVE DIESEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 1-8. doi: 10.13205/j.hjgc.202209001
    [14]RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019
    [15]WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017
    [16]XUE Chengjie, FANG Zhanqiang. PATH OF CARBON EMISSION PEAKING AND CARBON NEUTRALITY IN SOIL REMEDIATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 231-238. doi: 10.13205/j.hjgc.202208033
    [17]HU Xiangang, LI Jiawei, LI Jiaqiang, JIN Hongye, YU Fubo. SCIENTIFIC QUESTIONS ON THE BIOLOGICAL EFFECTS OF NANOMATERIALS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 171-181. doi: 10.13205/j.hjgc.202206022
    [18]LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023
    [19]LI Zhi-sheng, LIANG Xi-guan, JIN Yu-kai, ZHANG Hua-gang, OU Yao-chun. A COMPARATIVE STUDY ON EDICTIVE EFFECT OF PM2.5 IN BEIJING BASED ON TREE MODELS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 106-113. doi: 10.13205/j.hjgc.202106016
    [20]HE Zhe-xiang, LI Lei. AN AIR POLLUTANT CONCENTRATION PREDICTION MODEL BASED ON WAVELET TRANSFORM AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 111-119. doi: 10.13205/j.hjgc.202103016
  • Cited by

    Periodical cited type(1)

    1. 董晓冬,陈丽红,林芙,李惠平,黄慧. 基于机器学习的碳基材料对水中四环素吸附预测研究. 环境科学与管理. 2024(02): 75-80 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.6 %FULLTEXT: 16.6 %META: 82.3 %META: 82.3 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.7 %其他: 14.7 %其他: 0.2 %其他: 0.2 %Central District: 0.4 %Central District: 0.4 %Seattle: 0.2 %Seattle: 0.2 %[]: 0.6 %[]: 0.6 %上海: 0.6 %上海: 0.6 %东莞: 0.9 %东莞: 0.9 %临汾: 0.2 %临汾: 0.2 %丽水: 0.2 %丽水: 0.2 %乐山: 0.2 %乐山: 0.2 %九江: 0.6 %九江: 0.6 %保定: 0.6 %保定: 0.6 %内江: 0.4 %内江: 0.4 %北京: 1.9 %北京: 1.9 %十堰: 0.6 %十堰: 0.6 %南京: 1.3 %南京: 1.3 %南通: 0.2 %南通: 0.2 %台州: 0.2 %台州: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 1.3 %天津: 1.3 %宣城: 0.6 %宣城: 0.6 %宿州: 0.2 %宿州: 0.2 %尚佩恩: 0.6 %尚佩恩: 0.6 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 4.3 %广州: 4.3 %弗吉: 0.2 %弗吉: 0.2 %张家口: 0.9 %张家口: 0.9 %惠州: 0.9 %惠州: 0.9 %成都: 9.5 %成都: 9.5 %扬州: 1.3 %扬州: 1.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.3 %昆明: 1.3 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.3 %杭州: 1.3 %武汉: 1.1 %武汉: 1.1 %洛杉矶: 0.2 %洛杉矶: 0.2 %济南: 0.2 %济南: 0.2 %济源: 0.2 %济源: 0.2 %海口: 0.2 %海口: 0.2 %深圳: 2.2 %深圳: 2.2 %漯河: 2.8 %漯河: 2.8 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.2 %福州: 0.2 %芒廷维尤: 15.3 %芒廷维尤: 15.3 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 0.2 %苏州: 0.2 %茂名: 0.4 %茂名: 0.4 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.9 %衢州: 0.9 %西宁: 14.3 %西宁: 14.3 %西安: 0.2 %西安: 0.2 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.7 %运城: 1.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.6 %郑州: 0.6 %重庆: 1.3 %重庆: 1.3 %长春: 3.2 %长春: 3.2 %长沙: 0.9 %长沙: 0.9 %香港: 1.5 %香港: 1.5 %其他其他Central DistrictSeattle[]上海东莞临汾丽水乐山九江保定内江北京十堰南京南通台州嘉兴天津宣城宿州尚佩恩常州常德广州弗吉张家口惠州成都扬州无锡昆明晋城朝阳杭州武汉洛杉矶济南济源海口深圳漯河石家庄福州芒廷维尤芝加哥苏州茂名衡阳衢州西宁西安贵阳运城遵义邯郸郑州重庆长春长沙香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (380) PDF downloads(6) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return