Citation: | GAO Song, QIU Yong, MENG Fanlin, ZHANG Xiaying, PAN Deli, WANG Kaijun. STATE-OF-ART AND TRENDS OF DATA ANALYTICAL TECHNIQUES FOR WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 194-203. doi: 10.13205/j.hjgc.202206025 |
[1] |
中国产业信息网. 2019年中国污水处理厂数量、产能及各省污水处理厂发展现状.http://hbshebei.bjx.com.cn/news/522228.html.
|
[2] |
LU J Y, WANG X M, LIU H Q, et al. Optimizing operation of municipal wastewater treatment plants in China:the remaining barriers and future implications[J]. Environment International, 2019, 129:273-278.
|
[3] |
QIU Y, LI J, HUANG X, et al. A feasible data-driven mining system to optimize wastewater treatment process design and operation[J]. Water, 2018, 10(134210):1342.
|
[4] |
COROMINAS L, GARRIDO-BASERBA M, VILLEZ K, et al. Transforming data into knowledge for improved wastewater treatment operation:a critical review of techniques[J]. Environmental Modelling&Software, 2018, 106(SI):89-103.
|
[5] |
中国城镇供水排水协会.城镇水务行业智慧水务调研分析报告(2020年)[M].北京:中国环境出版集团, 2021.
|
[6] |
施汉昌,邱勇.污水生物处理的数学模型与应用[M].北京:中国建筑工业出版社, 2014.
|
[7] |
肖剑波,卢培利,张文阁,等.城市污水处理厂进水规律表征与模型校核[J].环境工程学报,2016, 10(8):4244-4250.
|
[8] |
LI D, YANG H Z, LIANG X F. Prediction analysis of a wastewater treatment system using a Bayesian network[J]. Environmental Modelling&Software, 2013, 40:140-150.
|
[9] |
静贺,邱勇,沈童刚,等.城市污水处理厂进水动态特性及其影响研究[J].给水排水,2010, 46(8):35-38.
|
[10] |
董建华,王国胤,姚文.基于PCA的水质数据相似度分析模型[J].环境工程,2016, 34(增刊1):841-844.
|
[11] |
WONGBURI P, PARK J K. Big data analytics from a wastewater treatment plant[J]. Sustainability (Basel, Switzerland), 2021, 13(22):12383.
|
[12] |
ESCALAS-CAÑELLAS A,ÁBREGO-GÓNGORA C J, BARAJAS-LÓPEZ M G, et al. A time series model for influent temperature estimation:application to dynamic temperature modelling of an aerated lagoon[J]. Water Research, 2008, 42(10):2551-2562.
|
[13] |
CAI J M, LIANG P, QIU Y, et al. A mass balance framework to evaluate the new pathways of biological nutrient removal in wastewater treatment[J]. Journal of Water Process Engineering, 2020, 37:101523.
|
[14] |
沈童刚,邱勇,应启锋,等.污水处理厂模拟软件BioWIN的应用[J].给水排水,2009(增刊1):459-462.
|
[15] |
THERRIEN J, NICOLAÏ N, VANROLLEGHEM P A. A critical review of the data pipeline:how wastewater system operation flows from data to intelligence[J]. Water Science and Technology, 2020, 82(12):2613.
|
[16] |
CASTILLO A, CHEALI P, GÓMEZ V, et al. An integrated knowledge-based and optimization tool for the sustainable selection of wastewater treatment process concepts[J]. Environmental Modelling&Software, 2016, 84:177-192.
|
[17] |
XU R Z, CAO J S, FANG F, et al. Integrated data-driven strategy to optimize the processes configuration for full-scale wastewater treatment plant predesign[J]. Science of the Total Environment, 2021, 785:147356.
|
[18] |
邱勇,施汉昌,曾思育,等.污水处理厂自动控制系统的全流程策略与方法[J].中国给水排水,2011,27(2):16-19.
|
[19] |
FAHAD A, TARI Z, ALMALAWI A, et al. PPFSCADA:privacy preserving framework for SCADA data publishing[J]. Future Generation Computer Systems, 2014, 37:496-511.
|
[20] |
EERIKÄINEN S, HAIMI H, MIKOLA A, et al. Data analytics in control and operation of municipal wastewater treatment plants:qualitative analysis of needs and barriers[J]. Water Science&Technology, 2020,82(12):2681-2690.
|
[21] |
NEGRI E, FUMAGALLI L, MACCHI M. A review of the roles of digital twin in CPS-based production systems[J]. Procedia manufacturing, 2017, 11:939-948.
|
[22] |
IWA White paper-Ditigal Twins[J/OL].[2021-12-20].https://iwa-network.org/wp-content/uploads/2021/03/Digital-Twins.pdf.
|
[23] |
DDHI Future City Flow[M/OL].[2021-12-20]. https://www.dhigroup.com/operational-services/future-city-flow.
|
[24] |
Haskoning Case[M/OL].[2021-12-20].https://global.royalhaskoningdhv.com/digital/resources/publications/digital-twins-for-wastewater-infrastructure.
|
[25] |
Hubgrade digital solutions[M/OL].[2021-12-20]. https://www.veoliawatertechnologies.com/en/hubgrade-digital-solutions.
|
[26] |
GIBERT K, IZQUIERDO J, SÀNCHEZ-MARRō M, et al. Which method to use?An assessment of data mining methods in Environmental Data Science[J]. Environmental Modelling&Software, 2018, 110:3-27.
|
[27] |
HUANG R X, MA C X, MA J, et al. Machine learning in natural and engineered water systems[J]. Water Research, 2021, 205:117666.
|
[28] |
GIBERT K, RODRÍGUEZ-SILVA G, RODRÍGUEZ-RODA I. Knowledge discovery with clustering based on rules by states:a water treatment application[J]. Environmental Modelling&Software, 2010, 25(6):712-723.
|
[29] |
ZHANG L, SCHOLZ M, MUSTAFA A, et al. Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map[J]. Water Research, 2008, 42(13):3519-3527.
|
[30] |
李冰,邱勇,田宇心,等.面向污水处理厂提标改造的效能测试与模型模拟实践[J].环境工程,2020, 38(7):93-99.
|
[31] |
李天宇,吴远远,郝晓地,等.数据清洗对污水处理厂生物建模可靠性影响研究[J].环境科学学报,2020, 40(9):3298-3310.
|
[32] |
BERTHOUEX P M. Constructing control charts for wastewater treatment plant operation[J]. Research Journal of the Water Pollution Control Federation, 1989, 61(9):1534-1551.
|
[33] |
熊志容.质量控制图在化工厂污水管理中的应用[J].安全、健康和环境,2010, 10(9):20-23.
|
[34] |
施汉昌,邱勇.污水生物处理的数学模型与应用[M].北京:中国建筑工业出版社, 2014.
|
[35] |
van LOOSDRECHT M C M, LOPEZ-VAZQUEZ C M, MEIJER S C F, et al. Twenty-five years of ASM1:past, present and future of wastewater treatment modelling[J]. Journal of hydroinformatics, 2015, 17(5):697-718.
|
[36] |
宋英琦,孙培德,王如意.活性污泥系统生物场-水力场-温度场耦合模型(FCASM3-Hydro-Temp)Ⅱ:模型校验[J].环境科学学报,2008,28(12):2442-2448.
|
[37] |
郝晓地,宋虹苇,胡沅胜,等.采用TUD模型动态模拟倒置A2/O工艺运行工况[J].中国给水排水,2007,23(16):85-89.
|
[38] |
魏忠庆,上官海东,叶均磊,等.基于GPS-X模拟的污水处理厂提标工艺优化[J].中国给水排水,2018, 34(19):81-84.
|
[39] |
李冰,邱勇,田宇心,等.面向污水处理厂提标改造的效能测试与模型模拟实践[J].环境工程,2020, 38(7):93-99.
|
[40] |
NEWHART K B, HOLLOWAY R W, HERING A S, et al. Data-driven performance analyses of wastewater treatment plants:a review[J]. Water Research, 2019, 157:498-513.
|
[41] |
VERMA A, WEI X, KUSIAK A. Predicting the total suspended solids in wastewater:a data-mining approach[J]. Engineering Applications of Artificial Intelligence, 2013, 26(4):1366-1372.
|
[42] |
忻培强.好氧微生物污水处理系统的专家系统建立[J].环境工程,2014, 32(增刊1):364-366.
|
[43] |
VERMA A, WEI X, KUSIAK A. Predicting the total suspended solids in wastewater:a data-mining approach[J]. Engineering Applications of Artificial Intelligence, 2013, 26(4):1366-1372.
|
[44] |
ZHAO Y, GUO L, LIANG J, et al. Seasonal artificial neural network model for water quality prediction via a clustering analysis method in a wastewater treatment plant of China[J]. Desalination and Water Treatment, 2016, 57(8):3452-3465.
|
[45] |
BORZOOEI S, MIRANDA G H B, TEEGAVARAPU R, et al. Assessment of weather-based influent scenarios for a WWTP:application of a pattern recognition technique[J]. Journal of Environmental Management, 2019, 242:450-456.
|
[46] |
GIBERT K, RODRIGUEZ-SILVA G, RODRIGUEZ-RODA Ⅰ. Knowledge discovery with clustering based on rules by states:a water treatment application[J]. Environmental Modelling&Software, 2010, 25(6):712-723.
|
[47] |
MARSILI-LIBELLI S. Control of SBR switching by fuzzy pattern recognition[J]. Water Research, 2006, 40(5):1095-1107.
|
[48] |
CHEN J C, CHANG N B. Mining the fuzzy control rules of aeration in a submerged biofilm wastewater treatment process[J]. Engineering Applications of Artificial Intelligence, 2007, 20(7):959-969.
|
[49] |
ZHANG Z J, ZENG Y H, KUSIAK A. Minimizing pump energy in a wastewater processing plant[J]. Energy, 2012, 47(1):505-514.
|
[50] |
ZHANG Z J, KUSIAK A, ZENG Y H, et al. Modeling and optimization of a wastewater pumping system with data-mining methods[J]. Applied Energy, 2016, 164:303-311.
|
[51] |
ZHANG Z J, HE X F, KUSIAK A. Data-driven minimization of pump operating and maintenance cost[J]. Engineering Applications of Artificial Intelligence, 2015, 40:37-46.
|
[52] |
王浩正,冯宇,孙文超,等.城市排水系统模型综述[J].中国给水排水,2021, 37(22):1-10.
|
[53] |
王浩正,邱依婷,韩冠宇,等.基于马斯京根方法的概念模型在排水系统中的应用[J].中国给水排水,2021, 37(13):113-120.
|
[54] |
王浩正,刘智晓,刘龙志,等.流域治理视角下构建弹性城市排水系统实时控制策略[J].中国给水排水,2020, 36(14):66-75.
|
[55] |
AM-TEAM. The digital twin of the link ping ozonation plant (Sweden)[J/OL]. https://www.am-team.com/en/cases/tekniskaverken-digitaltwin. 2021.
|
[56] |
STENTOFT P A, VEZZARO L, MIKKELSEN P S, et al. Integrated model predictive control of water resource recovery facilities and sewer systems in a smart grid:example of full-scale implementation in Kolding[J]. Water Science and Technology, 2020, 81(8):1766-1777.
|
[57] |
BERNARDELLI A, MARSILI-LIBELLI S, MANZINI A, et al. Real-time model predictive control of a wastewater treatment plant based on machine learning[J]. Water Science&Technology, 2020, 81(11):2391-2400.
|
[58] |
FIWAREWATER. Demo case#3:Intelligent control for wastewater treatment (The Netherlands)[J]. https://www.fiware4water.eu/demo-cases/netherlands-intelligent-control-wastewater-case, 2020.
|
[59] |
Intenational Water Association.When AI Meets Water (人工智能赋能数字水务)[Z/OL]. IWA微信公众号注册后下载. 2021.
|
[60] |
ASSOCIATION I W. Digital Water Operational digital twins in the urban water sector:case studies[J/OL]. https://iwa-network.org/wp-content/uploads/2021/03/Digital-Twins.pdf. 2021.
|
[61] |
邱勇,毕怀斌,田宇心,等.污水处理厂进水数据特征识别与案例分析[J].环境科学学报,2022,42(4):44-52.
|
[62] |
O'CALLAGHAN P, DAIGGER G, ADAPA L, et al. Development and application of a model to study water technology adoption[J]. Water Environment Research, 2018,90:563-574.
|
[63] |
GIBERT K, HORSBURGH J S, ATHANASIADIS I N, et al. Environmental data science[J]. Environmental Modelling&Software, 2018, 106:4-12.
|