Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
GAO Song, QIU Yong, MENG Fanlin, ZHANG Xiaying, PAN Deli, WANG Kaijun. STATE-OF-ART AND TRENDS OF DATA ANALYTICAL TECHNIQUES FOR WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 194-203. doi: 10.13205/j.hjgc.202206025
Citation: GAO Song, QIU Yong, MENG Fanlin, ZHANG Xiaying, PAN Deli, WANG Kaijun. STATE-OF-ART AND TRENDS OF DATA ANALYTICAL TECHNIQUES FOR WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 194-203. doi: 10.13205/j.hjgc.202206025

STATE-OF-ART AND TRENDS OF DATA ANALYTICAL TECHNIQUES FOR WASTEWATER TREATMENT PROCESSES

doi: 10.13205/j.hjgc.202206025
  • Received Date: 2022-01-30
    Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • The rapidly developing technologies in data science have provided powerful tools for the data analytical process in wastewater treatment plants (WWTPs).Successfully applying data analytics in WWTPs needs the systematical approach to overcome the gaps in data,algorithm,and computing power.In this paper,firstly we summarized the advances in data analytics for WWTPs,and discussed the challenges that remained in the data quality control and mathematical models.Secondly,we summarized four typical four scenarios of data analytics in WWTPs and introduced twelve cases of integral application of data analytics in the wastewater treatment systems.Thirdly,the technical maturity of data analytics in WWTPs was estimated using the classic tools of hyper curves and technical readiness levels.Finally,the demands of water sectors on data analytics were analyzed to clarify the trends of the technical evolution of data analytics for WWTPs.This review was expected to help the operators and managers in WWTPs understand the advances in data analytics and utilize the developed tools to solve the process problems.
  • [1]
    中国产业信息网. 2019年中国污水处理厂数量、产能及各省污水处理厂发展现状.http://hbshebei.bjx.com.cn/news/522228.html.
    [2]
    LU J Y, WANG X M, LIU H Q, et al. Optimizing operation of municipal wastewater treatment plants in China:the remaining barriers and future implications[J]. Environment International, 2019, 129:273-278.
    [3]
    QIU Y, LI J, HUANG X, et al. A feasible data-driven mining system to optimize wastewater treatment process design and operation[J]. Water, 2018, 10(134210):1342.
    [4]
    COROMINAS L, GARRIDO-BASERBA M, VILLEZ K, et al. Transforming data into knowledge for improved wastewater treatment operation:a critical review of techniques[J]. Environmental Modelling&Software, 2018, 106(SI):89-103.
    [5]
    中国城镇供水排水协会.城镇水务行业智慧水务调研分析报告(2020年)[M].北京:中国环境出版集团, 2021.
    [6]
    施汉昌,邱勇.污水生物处理的数学模型与应用[M].北京:中国建筑工业出版社, 2014.
    [7]
    肖剑波,卢培利,张文阁,等.城市污水处理厂进水规律表征与模型校核[J].环境工程学报,2016, 10(8):4244-4250.
    [8]
    LI D, YANG H Z, LIANG X F. Prediction analysis of a wastewater treatment system using a Bayesian network[J]. Environmental Modelling&Software, 2013, 40:140-150.
    [9]
    静贺,邱勇,沈童刚,等.城市污水处理厂进水动态特性及其影响研究[J].给水排水,2010, 46(8):35-38.
    [10]
    董建华,王国胤,姚文.基于PCA的水质数据相似度分析模型[J].环境工程,2016, 34(增刊1):841-844.
    [11]
    WONGBURI P, PARK J K. Big data analytics from a wastewater treatment plant[J]. Sustainability (Basel, Switzerland), 2021, 13(22):12383.
    [12]
    ESCALAS-CAÑELLAS A,ÁBREGO-GÓNGORA C J, BARAJAS-LÓPEZ M G, et al. A time series model for influent temperature estimation:application to dynamic temperature modelling of an aerated lagoon[J]. Water Research, 2008, 42(10):2551-2562.
    [13]
    CAI J M, LIANG P, QIU Y, et al. A mass balance framework to evaluate the new pathways of biological nutrient removal in wastewater treatment[J]. Journal of Water Process Engineering, 2020, 37:101523.
    [14]
    沈童刚,邱勇,应启锋,等.污水处理厂模拟软件BioWIN的应用[J].给水排水,2009(增刊1):459-462.
    [15]
    THERRIEN J, NICOLAÏ N, VANROLLEGHEM P A. A critical review of the data pipeline:how wastewater system operation flows from data to intelligence[J]. Water Science and Technology, 2020, 82(12):2613.
    [16]
    CASTILLO A, CHEALI P, GÓMEZ V, et al. An integrated knowledge-based and optimization tool for the sustainable selection of wastewater treatment process concepts[J]. Environmental Modelling&Software, 2016, 84:177-192.
    [17]
    XU R Z, CAO J S, FANG F, et al. Integrated data-driven strategy to optimize the processes configuration for full-scale wastewater treatment plant predesign[J]. Science of the Total Environment, 2021, 785:147356.
    [18]
    邱勇,施汉昌,曾思育,等.污水处理厂自动控制系统的全流程策略与方法[J].中国给水排水,2011,27(2):16-19.
    [19]
    FAHAD A, TARI Z, ALMALAWI A, et al. PPFSCADA:privacy preserving framework for SCADA data publishing[J]. Future Generation Computer Systems, 2014, 37:496-511.
    [20]
    EERIKÄINEN S, HAIMI H, MIKOLA A, et al. Data analytics in control and operation of municipal wastewater treatment plants:qualitative analysis of needs and barriers[J]. Water Science&Technology, 2020,82(12):2681-2690.
    [21]
    NEGRI E, FUMAGALLI L, MACCHI M. A review of the roles of digital twin in CPS-based production systems[J]. Procedia manufacturing, 2017, 11:939-948.
    [22]
    IWA White paper-Ditigal Twins[J/OL].[2021-12-20].https://iwa-network.org/wp-content/uploads/2021/03/Digital-Twins.pdf.
    [23]
    DDHI Future City Flow[M/OL].[2021-12-20]. https://www.dhigroup.com/operational-services/future-city-flow.
    [24]
    Haskoning Case[M/OL].[2021-12-20].https://global.royalhaskoningdhv.com/digital/resources/publications/digital-twins-for-wastewater-infrastructure.
    [25]
    Hubgrade digital solutions[M/OL].[2021-12-20]. https://www.veoliawatertechnologies.com/en/hubgrade-digital-solutions.
    [26]
    GIBERT K, IZQUIERDO J, SÀNCHEZ-MARRō M, et al. Which method to use?An assessment of data mining methods in Environmental Data Science[J]. Environmental Modelling&Software, 2018, 110:3-27.
    [27]
    HUANG R X, MA C X, MA J, et al. Machine learning in natural and engineered water systems[J]. Water Research, 2021, 205:117666.
    [28]
    GIBERT K, RODRÍGUEZ-SILVA G, RODRÍGUEZ-RODA I. Knowledge discovery with clustering based on rules by states:a water treatment application[J]. Environmental Modelling&Software, 2010, 25(6):712-723.
    [29]
    ZHANG L, SCHOLZ M, MUSTAFA A, et al. Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map[J]. Water Research, 2008, 42(13):3519-3527.
    [30]
    李冰,邱勇,田宇心,等.面向污水处理厂提标改造的效能测试与模型模拟实践[J].环境工程,2020, 38(7):93-99.
    [31]
    李天宇,吴远远,郝晓地,等.数据清洗对污水处理厂生物建模可靠性影响研究[J].环境科学学报,2020, 40(9):3298-3310.
    [32]
    BERTHOUEX P M. Constructing control charts for wastewater treatment plant operation[J]. Research Journal of the Water Pollution Control Federation, 1989, 61(9):1534-1551.
    [33]
    熊志容.质量控制图在化工厂污水管理中的应用[J].安全、健康和环境,2010, 10(9):20-23.
    [34]
    施汉昌,邱勇.污水生物处理的数学模型与应用[M].北京:中国建筑工业出版社, 2014.
    [35]
    van LOOSDRECHT M C M, LOPEZ-VAZQUEZ C M, MEIJER S C F, et al. Twenty-five years of ASM1:past, present and future of wastewater treatment modelling[J]. Journal of hydroinformatics, 2015, 17(5):697-718.
    [36]
    宋英琦,孙培德,王如意.活性污泥系统生物场-水力场-温度场耦合模型(FCASM3-Hydro-Temp)Ⅱ:模型校验[J].环境科学学报,2008,28(12):2442-2448.
    [37]
    郝晓地,宋虹苇,胡沅胜,等.采用TUD模型动态模拟倒置A2/O工艺运行工况[J].中国给水排水,2007,23(16):85-89.
    [38]
    魏忠庆,上官海东,叶均磊,等.基于GPS-X模拟的污水处理厂提标工艺优化[J].中国给水排水,2018, 34(19):81-84.
    [39]
    李冰,邱勇,田宇心,等.面向污水处理厂提标改造的效能测试与模型模拟实践[J].环境工程,2020, 38(7):93-99.
    [40]
    NEWHART K B, HOLLOWAY R W, HERING A S, et al. Data-driven performance analyses of wastewater treatment plants:a review[J]. Water Research, 2019, 157:498-513.
    [41]
    VERMA A, WEI X, KUSIAK A. Predicting the total suspended solids in wastewater:a data-mining approach[J]. Engineering Applications of Artificial Intelligence, 2013, 26(4):1366-1372.
    [42]
    忻培强.好氧微生物污水处理系统的专家系统建立[J].环境工程,2014, 32(增刊1):364-366.
    [43]
    VERMA A, WEI X, KUSIAK A. Predicting the total suspended solids in wastewater:a data-mining approach[J]. Engineering Applications of Artificial Intelligence, 2013, 26(4):1366-1372.
    [44]
    ZHAO Y, GUO L, LIANG J, et al. Seasonal artificial neural network model for water quality prediction via a clustering analysis method in a wastewater treatment plant of China[J]. Desalination and Water Treatment, 2016, 57(8):3452-3465.
    [45]
    BORZOOEI S, MIRANDA G H B, TEEGAVARAPU R, et al. Assessment of weather-based influent scenarios for a WWTP:application of a pattern recognition technique[J]. Journal of Environmental Management, 2019, 242:450-456.
    [46]
    GIBERT K, RODRIGUEZ-SILVA G, RODRIGUEZ-RODA Ⅰ. Knowledge discovery with clustering based on rules by states:a water treatment application[J]. Environmental Modelling&Software, 2010, 25(6):712-723.
    [47]
    MARSILI-LIBELLI S. Control of SBR switching by fuzzy pattern recognition[J]. Water Research, 2006, 40(5):1095-1107.
    [48]
    CHEN J C, CHANG N B. Mining the fuzzy control rules of aeration in a submerged biofilm wastewater treatment process[J]. Engineering Applications of Artificial Intelligence, 2007, 20(7):959-969.
    [49]
    ZHANG Z J, ZENG Y H, KUSIAK A. Minimizing pump energy in a wastewater processing plant[J]. Energy, 2012, 47(1):505-514.
    [50]
    ZHANG Z J, KUSIAK A, ZENG Y H, et al. Modeling and optimization of a wastewater pumping system with data-mining methods[J]. Applied Energy, 2016, 164:303-311.
    [51]
    ZHANG Z J, HE X F, KUSIAK A. Data-driven minimization of pump operating and maintenance cost[J]. Engineering Applications of Artificial Intelligence, 2015, 40:37-46.
    [52]
    王浩正,冯宇,孙文超,等.城市排水系统模型综述[J].中国给水排水,2021, 37(22):1-10.
    [53]
    王浩正,邱依婷,韩冠宇,等.基于马斯京根方法的概念模型在排水系统中的应用[J].中国给水排水,2021, 37(13):113-120.
    [54]
    王浩正,刘智晓,刘龙志,等.流域治理视角下构建弹性城市排水系统实时控制策略[J].中国给水排水,2020, 36(14):66-75.
    [55]
    AM-TEAM. The digital twin of the link ping ozonation plant (Sweden)[J/OL]. https://www.am-team.com/en/cases/tekniskaverken-digitaltwin. 2021.
    [56]
    STENTOFT P A, VEZZARO L, MIKKELSEN P S, et al. Integrated model predictive control of water resource recovery facilities and sewer systems in a smart grid:example of full-scale implementation in Kolding[J]. Water Science and Technology, 2020, 81(8):1766-1777.
    [57]
    BERNARDELLI A, MARSILI-LIBELLI S, MANZINI A, et al. Real-time model predictive control of a wastewater treatment plant based on machine learning[J]. Water Science&Technology, 2020, 81(11):2391-2400.
    [58]
    FIWAREWATER. Demo case#3:Intelligent control for wastewater treatment (The Netherlands)[J]. https://www.fiware4water.eu/demo-cases/netherlands-intelligent-control-wastewater-case, 2020.
    [59]
    Intenational Water Association.When AI Meets Water (人工智能赋能数字水务)[Z/OL]. IWA微信公众号注册后下载. 2021.
    [60]
    ASSOCIATION I W. Digital Water Operational digital twins in the urban water sector:case studies[J/OL]. https://iwa-network.org/wp-content/uploads/2021/03/Digital-Twins.pdf. 2021.
    [61]
    邱勇,毕怀斌,田宇心,等.污水处理厂进水数据特征识别与案例分析[J].环境科学学报,2022,42(4):44-52.
    [62]
    O'CALLAGHAN P, DAIGGER G, ADAPA L, et al. Development and application of a model to study water technology adoption[J]. Water Environment Research, 2018,90:563-574.
    [63]
    GIBERT K, HORSBURGH J S, ATHANASIADIS I N, et al. Environmental data science[J]. Environmental Modelling&Software, 2018, 106:4-12.
  • Relative Articles

    [1]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [2]WANG Jianhui, LIAO Wanshan, LI Huimin, FENG Dong, GUO Zhiwei, Mohamed S. Mahmoud, ZHANG Bing, GAO Xu, SHEN Yu, CHEN Youpeng. A DATA ENHANCEMENT METHOD FOR SUPPORTING INTELLIGENT MANAGEMENT OF WWTPs UNDER DATA DEFICIENCY CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 153-159. doi: 10.13205/j.hjgc.202406018
    [3]QIAO Yiwen, REN Lehui, WANG Zhiwei. RECENT ADVANCES IN MATHEMATICAL MODELS FOR MEMBRANE-AERATED BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 243-254. doi: 10.13205/j.hjgc.202303033
    [4]ZHAO Congcong, ZHAO Yunfei, REN Ziyan. APPLICATION OF WATER IOT MONITORING TECHNOLOGY IN PROBLEM DIAGNOSIS OF DRAINAGE NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 34-38,45. doi: 10.13205/j.hjgc.202311007
    [5]LU Huimin, CHEN Zhuo, NI Xinye, WU Yinhu, HU Hongying. ANALYSIS OF WATER RECLAMATION AND REUSE IN JAPAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 237-242. doi: 10.13205/j.hjgc.202303032
    [6]ZHAO Jialong, FENG Heping, HU Shuguo, ZHOU Fengran, LI Jian, WANG Defa, LIU Zhiyong, ZHANG Tiqiang. DEVELOPMENT AND APPLICATION OF STABLE GASEOUS ISOTOPE ANALYSIS TECHNIQUE IN ATMOSPHERIC ENVIRONMENT MONITORING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 20-29,44. doi: 10.13205/j.hjgc.202310004
    [7]Chen Shi, PENG Lai, XU Yifeng, LIANG Chuanzhou, NI Bingjie. RECENT ADVANCES IN MATHEMATICAL MODELING OF NITROUS OXIDES EMISSION DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 97-106,122. doi: 10.13205/j.hjgc.202206013
    [8]ZHANG Jiao, XIAO Kang, LIANG Shuai, HUANG Xia. MEMBRANE TECHNOLOGIES FOR MUNICIPAL WASTEWATER TREATMENT AND RECLAMATION IN CHINA:APPLICATION AND CHALLENGES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 1-6,153. doi: 10.13205/j.hjgc.202203001
    [9]RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019
    [10]XUE Zhaoxia, FENG Qian, FANG Fang, LUO Jingyang, CAO Jiashun, XU Runze. EMISSION CHARACTERISTICS AND MECHANISMS OF METHANE IN MUNICIPAL SEWER SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 123-129,193. doi: 10.13205/j.hjgc.202206016
    [11]XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
    [12]WANG Qian, DENG Qiaosi, WU Wei, AI Fangyi, DU Junli, ZHANG Yuanhe, BAI Fan, LEI Mingming, QU Ruihua, GAN Yang, DU Weiwei. OPERATION DIAGNOSIS AND CARBON SOURCE OPTIMIZATION OF YONGCHUAN WASTEWATER TREATMENT PLANT USING PROCESS MODELING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 219-225. doi: 10.13205/j.hjgc.202206028
    [13]YIN Fengjun, XU Zeyu, LIU Hong. THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018
    [14]XU Ao, WU Yin-hu, CHEN Zhuo, CUI Qi, BAI Yu, LI Kui-xiao, SHI Yu-long, GAO Qiang, HU Hong-ying. MUNICIPAL WASTEWATER RECLAMATION IN BEIJING:STATE-OF-THE-ART AND FUTURE POTENTIAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 1-6,47. doi: 10.13205/j.hjgc.202109001
    [15]QU Xuan, YIN An-wei, FANG Ai-lun, LI Chun-yan, FENG Dong-lei, LI Ang. RESEARCH PROGRESS ON TREATMENT TECHNOLOGY OF REFRACTORY POLYMER-CONTAINING OILFIELD PRODUCED WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 46-51. doi: 10.13205/j.hjgc.202111005
    [16]XU Yi, YANG Shi-hong, YOU Guo-xiang, HOU Jun. REVIEW OF THE ENVIRONMENTAL BEHAVIORS AND TOXICITY EFFECT OF NANOCERIA IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 7-13,75. doi: 10.13205/j.hjgc.202109002
    [17]GU Xiao-dan, HUANG Yong, DING Yong-wei, HUANG Ji-hui. DIAGNOSIS AND ANALYSIS BASED ON MATHEMATICAL MODEL ON PROBLEMS IN SEWAGE TREATMENT PLANTS IN VILLAGES AND TOWNS WITH LOW LOAD OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 9-15. doi: 10.13205/j.hjgc.202105002
    [18]ZHANG Shuang, YANG Qing, LIU Xiu-hong, CUI Bin, LIU Zhi-bin. RESEARCH PROGRASS ON STRUCTURAL CHARACTERISTICS AND APPLICATION OF EXPERT SYSTEM IN WASTEWATER TREATMENT PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 25-31,99. doi: 10.13205/j.hjgc.202007004
    [19]LI Rui-cheng. ANALYSIS ON DESIGN CHARACTERISTICS OF A LARGE-SCALE SEMI-UNDERGROUND WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 109-115. doi: 10.13205/j.hjgc.202007017
    [20]Zhang Wenfen, Luo Zhouquan, Xu Shimin. BUILDING OF MATHEMATICAL MODEL ABOUT SAFETY EARLY WARNING INDEX IN INDUSTRY AND TRADE SECTORS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 141-145. doi: 10.13205/j.hjgc.201501033
  • Cited by

    Periodical cited type(5)

    1. 贺德强,王一博,靳震震,陆立海,洪雷. 废水处理中水质监测参数的实时预测研究. 安全与环境学报. 2024(02): 732-738 .
    2. 陈其楠. 污水泵站恶臭气体排放预测模型研究. 环境科学与管理. 2024(04): 124-127 .
    3. 王建辉,廖万山,李慧敏,冯东,郭智威,Mohamed S.Mahmoud,张冰,高旭,申渝,陈猷鹏. 数据缺陷条件下支持污水处理厂智能管理的数据增强方法. 环境工程. 2024(06): 153-159 . 本站查看
    4. 张凯,赵虎,张皓翔. 环氧污水处理工程实例. 清洗世界. 2024(07): 16-18 .
    5. 龙文丽. 环保工程中污水处理工艺及方法探究. 皮革制作与环保科技. 2023(03): 13-15 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.6 %FULLTEXT: 7.6 %META: 84.7 %META: 84.7 %PDF: 7.6 %PDF: 7.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %其他: 0.1 %其他: 0.1 %China: 0.3 %China: 0.3 %Perth Amboy: 0.4 %Perth Amboy: 0.4 %[]: 0.1 %[]: 0.1 %上海: 3.3 %上海: 3.3 %东莞: 4.8 %东莞: 4.8 %中山: 0.1 %中山: 0.1 %临汾: 0.4 %临汾: 0.4 %九江: 0.1 %九江: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %六安: 0.4 %六安: 0.4 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 6.1 %北京: 6.1 %十堰: 0.3 %十堰: 0.3 %南京: 2.9 %南京: 2.9 %南充: 0.1 %南充: 0.1 %南宁: 0.9 %南宁: 0.9 %南昌: 0.4 %南昌: 0.4 %南通: 0.3 %南通: 0.3 %厦门: 0.4 %厦门: 0.4 %台州: 1.6 %台州: 1.6 %合肥: 0.6 %合肥: 0.6 %哈尔滨: 0.3 %哈尔滨: 0.3 %大连: 0.1 %大连: 0.1 %天津: 0.6 %天津: 0.6 %太原: 0.3 %太原: 0.3 %宁波: 0.1 %宁波: 0.1 %安康: 0.3 %安康: 0.3 %宿州: 0.1 %宿州: 0.1 %密蘇里城: 0.4 %密蘇里城: 0.4 %巴音郭楞: 0.4 %巴音郭楞: 0.4 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %平顶山: 0.4 %平顶山: 0.4 %广州: 1.9 %广州: 1.9 %开封: 0.1 %开封: 0.1 %张家口: 1.2 %张家口: 1.2 %徐州: 0.1 %徐州: 0.1 %成都: 1.9 %成都: 1.9 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 1.2 %无锡: 1.2 %日照: 0.1 %日照: 0.1 %昆明: 2.7 %昆明: 2.7 %晋中: 0.9 %晋中: 0.9 %晋城: 0.3 %晋城: 0.3 %景德镇: 0.1 %景德镇: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.2 %杭州: 2.2 %枣庄: 0.1 %枣庄: 0.1 %楚雄: 0.1 %楚雄: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 3.8 %武汉: 3.8 %汕头: 0.6 %汕头: 0.6 %江门: 0.1 %江门: 0.1 %沈阳: 1.7 %沈阳: 1.7 %济南: 1.3 %济南: 1.3 %济源: 0.3 %济源: 0.3 %海口: 0.1 %海口: 0.1 %淄博: 0.3 %淄博: 0.3 %淮北: 0.1 %淮北: 0.1 %淮安: 0.3 %淮安: 0.3 %深圳: 1.4 %深圳: 1.4 %温州: 0.4 %温州: 0.4 %湖州: 0.4 %湖州: 0.4 %滨州: 0.1 %滨州: 0.1 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.1 %潍坊: 0.1 %珠海: 0.1 %珠海: 0.1 %盐城: 0.4 %盐城: 0.4 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.3 %秦皇岛: 0.3 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 6.9 %芒廷维尤: 6.9 %芝加哥: 1.0 %芝加哥: 1.0 %莆田: 0.3 %莆田: 0.3 %蚌埠: 0.3 %蚌埠: 0.3 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %西宁: 10.0 %西宁: 10.0 %西安: 1.3 %西安: 1.3 %许昌: 0.4 %许昌: 0.4 %贵阳: 1.0 %贵阳: 1.0 %运城: 1.2 %运城: 1.2 %遂宁: 0.1 %遂宁: 0.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.9 %郑州: 0.9 %重庆: 1.9 %重庆: 1.9 %金华: 0.4 %金华: 0.4 %铁岭: 0.3 %铁岭: 0.3 %银川: 0.3 %银川: 0.3 %镇江: 0.6 %镇江: 0.6 %长春: 0.3 %长春: 0.3 %长沙: 1.3 %长沙: 1.3 %长治: 0.3 %长治: 0.3 %陵水: 0.6 %陵水: 0.6 %青岛: 1.2 %青岛: 1.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他ChinaPerth Amboy[]上海东莞中山临汾九江佛山保定六安兰州内江北京十堰南京南充南宁南昌南通厦门台州合肥哈尔滨大连天津太原宁波安康宿州密蘇里城巴音郭楞常州常德平顶山广州开封张家口徐州成都扬州新乡无锡日照昆明晋中晋城景德镇朝阳杭州枣庄楚雄榆林武汉汕头江门沈阳济南济源海口淄博淮北淮安深圳温州湖州滨州漯河潍坊珠海盐城眉山石家庄福州秦皇岛绵阳芒廷维尤芝加哥莆田蚌埠衡水衡阳衢州西宁西安许昌贵阳运城遂宁遵义邯郸郑州重庆金华铁岭银川镇江长春长沙长治陵水青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (586) PDF downloads(58) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return