Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
GONG Yong-wei, LIU Wei-xun, YU Lei, CHEN Ye. MULTI-OBJECTIVE OPTIMIZATION OF COMBINEDSEWER OVERFLOW CONTROL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 128-133. doi: 10.13205/j.hjgc.202004023
Citation: WANG Yiming, MA Zhenhua, YANG Mengqi, DONG Xin, ZENG Siyu. A HYBRID MODELING STRATEGY FOR CONTROL SIMULATOR OF URBAN DRAINAGE SYSTEMS BASED ON DATA-DRIVEN AND MECHANISM-DRIVEN METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 204-211,225. doi: 10.13205/j.hjgc.202206026

A HYBRID MODELING STRATEGY FOR CONTROL SIMULATOR OF URBAN DRAINAGE SYSTEMS BASED ON DATA-DRIVEN AND MECHANISM-DRIVEN METHOD

doi: 10.13205/j.hjgc.202206026
  • Received Date: 2021-12-14
    Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • A hybrid control modelling method was proposed for optimal control of urban drainage systems,which adopted both data-driven and mechanism-driven simplification strategies.The method divided urban drainage systems into different regions,according to connected degree to the control target.These regions were modeled by LSTM model and Saint Venant equation separately.The method was verified within the service area of a wastewater treatment plant in City A in China.The proposed method established a surrogate control model based on a detailed hydraulic model.Compared with tank model,simulation accuracy in two CSO outfalls was improved by 3.85% and 22.86%,and improved by 5.66% and 3.57% compared to the LSTM model (measured in an average root mean value).The simulation time could be reduced by 98.7% in comparison to the detailed hydraulic model.Due to the advantage in accuracy and efficiency,the modelling strategy can provide references for the implementation of real-time control in urban drainage systems.
  • [1]
    徐智伟.基于强化学习的城市排水系统实时控制策略研究[D].北京:清华大学,2021.
    [2]
    CEMBRANO G, QUEVEDO J, SALAMERO M, et al. Optimal control of urban drainage systems:a case study[J]. Control Engineering Practice, 2004, 12(1):1-9.
    [3]
    PLEAU M, COLAS H, LAVALLÉE P, et al. Global optimal real-time control of the Quebec urban drainage system[J]. Environmental Modelling&Software, 2005, 20(4):401-413.
    [4]
    VEZZARO L, CHRISTENSEN M L, THIRSING C, et al. Water quality-based real time control of integrated urban drainage systems:a preliminary study from Copenhagen, Denmark[J]. Procedia Engineering, 2014, 70:1707-1716.
    [5]
    MYO L N, RUTTEN M, TIAN X. Flood mitigation through the optimal operation of a multi-reservoir system by using model predictive control:a case study in Myanmar[J]. Water, 2018, 10(10):1371.
    [6]
    SUN C C, ROMERO L, JOSEPH-DURAN B, et al. Integrated pollution-based real-time control of sanitation systems[J]. Journal of Environmental Management, 2020, 269:110798.
    [7]
    席裕庚,李德伟,林姝.模型预测控制:现状与挑战[J].自动化学报,2013,39(3):222-236.
    [8]
    SADLER J M, GOODALL J L, BEHL M, et al. Leveraging open source software and parallel computing for model predictive control of urban drainage systems using EPA-SWMM5[J]. Environmental Modelling and Software, 2019, 120:104484.
    [9]
    LEITAO J P, SIMÕES N E, MAKSIMOVIĆ Č, et al. Real-time forecasting urban drainage models:full or simplified networks?[J]. Water Science and Technology, 2010, 62(9):2106-2114.
    [10]
    黄森辰.面向溢流污染削减的城市排水系统集成分层优化控制研究[D].北京:清华大学,2018.
    [11]
    ZHANG D, MARTINEZ N, LINDHOLM G, et al. Manage sewer in-line storage control using hydraulic model and recurrent neural network[J]. Water Resources Management, 2018, 32(6):2079-2098.
    [12]
    冯钧,潘飞.一种LSTM-BP多模型组合水文预报方法[J].计算机与现代化,2018(7):82-85.
    [13]
    殷兆凯,廖卫红,王若佳,等.基于长短时记忆神经网络(LSTM)的降雨径流模拟及预报[J].南水北调与水利科技,2019,17(6):1-9

    ,27.
  • Relative Articles

    [1]WU Yan, RONG Nai, HAN Long, LIU Kaiwei, WANG Jiuheng, MU Zhengyong, WANG Shanshan, SHI Xiuliang. STEAM HYDRATION ACTIVATION OF CELLULOSE TEMPLATE MODIFIED Ca-BASED CO2 SORBENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 163-171. doi: 10.13205/j.hjgc.202405021
    [2]HUANG Jiming, LIU Runqing, WU Sizhan, QIN Hangdao, CHEN Jing. PREPARATION AND CHARACTERIZATION OF DEFECTIVE Zr-BASED METAL-ORGANIC FRAMEWORKS AND THEIR ADSORPTION PROPERTIES FOR TETRACYCLINE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 33-40. doi: 10.13205/j.hjgc.202403004
    [3]LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010
    [4]HE Xi, LIU Chen, LI Jinglu, CHEN Ming, B. Larry LI. PERFORMANCE AND MECHANISM OF CSB-BOC ACTIVATED PMS FOR REMOVAL OF TETRACYCLINE HYDROCHLORIDE IN WATER IN SLOW-GATHERING AREAS OF RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 82-96. doi: 10.13205/j.hjgc.202402010
    [5]CONG Xin, SUN Meizhen, YUAN Xuehong, LI Taolue, XUE Nandong. IRON-BASED NANOMATERIALS MEDIATED BY LEAF EXTRACTS FROM SYCAMORE ACTIVATE PERSULFATES TO CATALYZE TBBPA DEGRADATION IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 107-114. doi: 10.13205/j.hjgc.202305015
    [6]LI Wei, NING Yuyang, LIU Ning, GAO Mingjie. ADSORPTION PERFORMANCE OF PEO-BASED MOFs HYBRID FOAM MATERIALS ON TETRACYCLINE AND Cu2+[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 76-85. doi: 10.13205/j.hjgc.202307011
    [7]YAN Yuan, WANG Yajun, CHEN Tianjing, AN Fangjiao. RESPONSE OF THREE PLANTS TO TETRACYCLINE POLLUTION STRESS IN BIORETENTION CELL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 65-74. doi: 10.13205/j.hjgc.202308009
    [8]YANG Jiani, ZHAO Baowei, YANG Maoying, SUO Jinmiao, ZHU Zhengyu, DENG Aiqin. PREPARATION OF Fe/C CATALYST BASED ON FERRIC CITRATE AND ITS ACTIVATION PERFORMANCE ON PEROXYDISULFATE TO DEGRADE SULFADIAZINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 116-123,251. doi: 10.13205/j.hjgc.202307016
    [9]ZHANG Shicheng, LI Simin, ZHU Jia. DEGRADATION OF METHYL ORANGE BY CuO/g-C3N4 ACTIVATED PEROXODISULFATE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 40-48. doi: 10.13205/j.hjgc.202210006
    [10]SUN Li-hua, MEI Xiao-yu, GAO Cheng, FENG Cui-min. MECHANISMS AND EFFICIENCY OF REMOVAL OF ORGANIC MATTER AND ANTIBIOTIC RESISTANCE GENES IN SECONDARY EFFLUENT OF WATARPLANTS BY DIFFERENT PERSULFATE ACTIVATION METHODS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 74-80,134. doi: 10.13205/j.hjgc.202209010
    [11]GUO Zhi-wei, ZHAO Bao-long, ZHENG Zhi-hong, HONG Fei-yu, XIN Si-yuan, WANG Xiao-wei, WANG Xing-xiao, ZHANG Zhen-zhen, NIU Fang, LI Guo-ting. PREPARATION OF MODIFIED DIATOMITE VIA CARBONIZATION AND ITS ADSORPTION PERFORMANCE ON TETRACYCLINE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 44-52. doi: 10.13205/j.hjgc.202205007
    [12]LIAO Quan, LUO Hua-yong, RONG Hong-wei, CHEN Bing-wei, LIANG Ying. ADSORPTION PERFORMANCE OF TETRACYCLINE ONTO NANO-ALUMINA MODIFIED GEL BEADS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 36-42. doi: 10.13205/j.hjgc.202009006
    [13]XU Rui, YANG Wei, YANG Zhe, CHENG Qian-lan, GU Li-ting, GUO Sheng. HIGH-EFFICIENT REMOVAL OF TETRACYCLINE HYDROCHLORIDE BASED ON PEROXYMONOSULFATE ACTIVATED BY CuO/EXPANDED GRAPHITE COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 48-54,47. doi: 10.13205/j.hjgc.202002006
  • Cited by

    Periodical cited type(5)

    1. 张洛红,刘彩琴,赵鑫,刘建宇,杨巧巧,王乐力,李庆. 铁锰铈-PA6基静电纺吸附剂的制备及其对水中铅和铬的吸附性能. 化工新型材料. 2024(01): 207-213+219 .
    2. 李钰辉,卓桂华,沈凯茜,李海霞,景乐,陈琬,甄广印,郑育毅. 磁改性污泥基生物炭对猪粪堆肥及土霉素降解的影响. 环境科学学报. 2024(04): 187-197 .
    3. 赵啟超,白红娟,韩群英,孙竹梅,刘鹏霄,王子豪,叶宇晗,王瑶. 低温热解磷酸改性花生壳生物炭的制备及对水中Cr(Ⅵ)的去除. 中北大学学报(自然科学版). 2024(04): 503-512 .
    4. 崔雅云,朱琳,盖楠,杜江坤. 针铁矿硫化过程对Cr(Ⅵ)还原的影响与机理. 安全与环境工程. 2024(04): 236-243 .
    5. 钟鑫莲,王梦璐,季宏兵. 铁基生物炭复合材料修复重金属污染的研究进展. 化工新型材料. 2024(10): 61-65 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.2 %FULLTEXT: 16.2 %META: 81.7 %META: 81.7 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.0 %其他: 19.0 %其他: 0.7 %其他: 0.7 %上海: 2.1 %上海: 2.1 %保定: 0.7 %保定: 0.7 %北京: 0.7 %北京: 0.7 %十堰: 1.4 %十堰: 1.4 %台州: 2.1 %台州: 2.1 %唐山: 4.2 %唐山: 4.2 %大同: 1.4 %大同: 1.4 %常德: 1.4 %常德: 1.4 %张家口: 0.7 %张家口: 0.7 %成都: 1.4 %成都: 1.4 %扬州: 0.7 %扬州: 0.7 %无锡: 1.4 %无锡: 1.4 %日喀则: 4.2 %日喀则: 4.2 %昆明: 1.4 %昆明: 1.4 %晋城: 0.7 %晋城: 0.7 %杭州: 0.7 %杭州: 0.7 %武汉: 0.7 %武汉: 0.7 %温州: 0.7 %温州: 0.7 %漯河: 0.7 %漯河: 0.7 %芒廷维尤: 26.8 %芒廷维尤: 26.8 %芝加哥: 2.8 %芝加哥: 2.8 %西宁: 15.5 %西宁: 15.5 %贵阳: 2.1 %贵阳: 2.1 %运城: 3.5 %运城: 3.5 %遵义: 0.7 %遵义: 0.7 %郑州: 0.7 %郑州: 0.7 %重庆: 0.7 %重庆: 0.7 %其他其他上海保定北京十堰台州唐山大同常德张家口成都扬州无锡日喀则昆明晋城杭州武汉温州漯河芒廷维尤芝加哥西宁贵阳运城遵义郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (586) PDF downloads(20) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return