Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhang Chengzhong, Ma Wenjing, Li Yong, Han Deming, Dai Zhiguang, Li Wentao, Han Jing. ANALYSIS OF CARBON COMPONENTS IN PM2. 5 DURING LATE SUMMER AND EARLY AUTUMN OF XI’AN CITY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 95-99. doi: 10.13205/j.hjgc.201505020
Citation: WANG Yiming, MA Zhenhua, YANG Mengqi, DONG Xin, ZENG Siyu. A HYBRID MODELING STRATEGY FOR CONTROL SIMULATOR OF URBAN DRAINAGE SYSTEMS BASED ON DATA-DRIVEN AND MECHANISM-DRIVEN METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 204-211,225. doi: 10.13205/j.hjgc.202206026

A HYBRID MODELING STRATEGY FOR CONTROL SIMULATOR OF URBAN DRAINAGE SYSTEMS BASED ON DATA-DRIVEN AND MECHANISM-DRIVEN METHOD

doi: 10.13205/j.hjgc.202206026
  • Received Date: 2021-12-14
    Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • A hybrid control modelling method was proposed for optimal control of urban drainage systems,which adopted both data-driven and mechanism-driven simplification strategies.The method divided urban drainage systems into different regions,according to connected degree to the control target.These regions were modeled by LSTM model and Saint Venant equation separately.The method was verified within the service area of a wastewater treatment plant in City A in China.The proposed method established a surrogate control model based on a detailed hydraulic model.Compared with tank model,simulation accuracy in two CSO outfalls was improved by 3.85% and 22.86%,and improved by 5.66% and 3.57% compared to the LSTM model (measured in an average root mean value).The simulation time could be reduced by 98.7% in comparison to the detailed hydraulic model.Due to the advantage in accuracy and efficiency,the modelling strategy can provide references for the implementation of real-time control in urban drainage systems.
  • [1]
    徐智伟.基于强化学习的城市排水系统实时控制策略研究[D].北京:清华大学,2021.
    [2]
    CEMBRANO G, QUEVEDO J, SALAMERO M, et al. Optimal control of urban drainage systems:a case study[J]. Control Engineering Practice, 2004, 12(1):1-9.
    [3]
    PLEAU M, COLAS H, LAVALLÉE P, et al. Global optimal real-time control of the Quebec urban drainage system[J]. Environmental Modelling&Software, 2005, 20(4):401-413.
    [4]
    VEZZARO L, CHRISTENSEN M L, THIRSING C, et al. Water quality-based real time control of integrated urban drainage systems:a preliminary study from Copenhagen, Denmark[J]. Procedia Engineering, 2014, 70:1707-1716.
    [5]
    MYO L N, RUTTEN M, TIAN X. Flood mitigation through the optimal operation of a multi-reservoir system by using model predictive control:a case study in Myanmar[J]. Water, 2018, 10(10):1371.
    [6]
    SUN C C, ROMERO L, JOSEPH-DURAN B, et al. Integrated pollution-based real-time control of sanitation systems[J]. Journal of Environmental Management, 2020, 269:110798.
    [7]
    席裕庚,李德伟,林姝.模型预测控制:现状与挑战[J].自动化学报,2013,39(3):222-236.
    [8]
    SADLER J M, GOODALL J L, BEHL M, et al. Leveraging open source software and parallel computing for model predictive control of urban drainage systems using EPA-SWMM5[J]. Environmental Modelling and Software, 2019, 120:104484.
    [9]
    LEITAO J P, SIMÕES N E, MAKSIMOVIĆ Č, et al. Real-time forecasting urban drainage models:full or simplified networks?[J]. Water Science and Technology, 2010, 62(9):2106-2114.
    [10]
    黄森辰.面向溢流污染削减的城市排水系统集成分层优化控制研究[D].北京:清华大学,2018.
    [11]
    ZHANG D, MARTINEZ N, LINDHOLM G, et al. Manage sewer in-line storage control using hydraulic model and recurrent neural network[J]. Water Resources Management, 2018, 32(6):2079-2098.
    [12]
    冯钧,潘飞.一种LSTM-BP多模型组合水文预报方法[J].计算机与现代化,2018(7):82-85.
    [13]
    殷兆凯,廖卫红,王若佳,等.基于长短时记忆神经网络(LSTM)的降雨径流模拟及预报[J].南水北调与水利科技,2019,17(6):1-9

    ,27.
  • Relative Articles

    [1]ZHAO Tianrui, CHEN Zhengrui, LIU Yiming, LI Yanliang, GUO Wei, TANG Xiaomi, TIAN Yu, ZHANG Jun, WANG Shutao. A SPATIAL DISTRIBUTION MODEL OF DOMESTIC WASTE BASED ON GIS REMOTE SENSING DATA ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 213-218. doi: 10.13205/j.hjgc.202302028
    [2]LI Danlin, GUO Shuai, HUANG Rongmin, ZHANG Hao, CHENG Haoke. RISK ASSESSMENT OF EXTRANEOUS WATER IN SEWAGE SYSTEMS BASED ON INTEGRATED MONITORING OF WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 39-45. doi: 10.13205/j.hjgc.202311006
    [3]XIE Wei, XU Jiao, LIN Zhiguo, YAN Di, ZHANG Yinglei. RESEARCH ON REAL-TIME SOURCE APPORTIONMENT METHOD OF VOCs BASED ON BP NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 231-238. doi: 10.13205/j.hjgc.202212031
    [4]CHEN An-yao, LUO An-cheng, LIANG Zhi-wei, LIN Qiang, JIA Rui-jie, PING Shao-wei, DU Ping. AN EXPLORATORY RESEARCH ON ONLINE MONITORING METHOD FOR RURAL DOMESTIC SEWAGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 227-233. doi: 10.13205/j.hjgc.202108031
    [5]SUN Qi, HAN Yan-he, QI Meng-meng. RESEARCH PROGRESS ON TOXICITY DETECTION INDICATORS BASED ON DIFFERENT BIOLOGICAL LEVELS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 63-70. doi: 10.13205/j.hjgc.202009011
    [10]Wang Wei Liu Bing Li Jianjun, . PROGRESS ON IN-SITU MONITORING METHODS OF ATMOSPHERIC GREENHOUSE GASES[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 125-128. doi: 10.13205/j.hjgc.201506028
    [11]Zhang Wenfen, Luo Zhouquan, Xu Shimin. BUILDING OF MATHEMATICAL MODEL ABOUT SAFETY EARLY WARNING INDEX IN INDUSTRY AND TRADE SECTORS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 141-145. doi: 10.13205/j.hjgc.201501033
    [12]Yang Wenhuan Chen Ahui Li Weiping Yu Linghong Yin Zhenyu Han Peijiang Duan Haojie, . WATER QUALITY ASSESSMENT OF KHERLEN RIVER AND IMPACT ANALYSIS OF THE WATER ENVIRONMENT OF HULUN LAKE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 113-116. doi: 10.13205/j.hjgc.201510025
    [13]You Kun Wang Di Fu Jinxiang Cao Sipeng, . BUILDING OF MONITORING INDEX SYSTEM OF POLLUTION SOURCES IN PUHE BASIN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 122-125. doi: 10.13205/j.hjgc.201503025
  • Cited by

    Periodical cited type(6)

    1. 程千. 基于GIS的油田变压器在线监测系统研究与应用. 电站系统工程. 2024(03): 66-68 .
    2. 张昺榴,王思敏,宗蔷雯,王云锋,杨少伟,廖勇. 金沙江白鹤滩水电站生态环境智慧管理平台的应用. 计算机应用. 2024(S1): 374-378 .
    3. 金建荣,葛国贤. 噪声在线监测系统的应用. 电子技术. 2024(09): 18-19 .
    4. 饶伯轩. 基于油色谱技术的主变压器在线监测方法研究. 电气技术与经济. 2024(12): 13-15 .
    5. 董莹,孙拥军. 基于NB-IoT的室外环境空气质量在线监测系统设计. 计算机测量与控制. 2023(02): 28-33 .
    6. 于姣. 基于单片机的自动识别噪声提醒系统的设计. 电声技术. 2023(05): 102-104+108 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.5 %FULLTEXT: 7.5 %META: 88.7 %META: 88.7 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %其他: 1.4 %其他: 1.4 %China: 0.5 %China: 0.5 %[]: 0.9 %[]: 0.9 %上海: 1.9 %上海: 1.9 %东莞: 2.4 %东莞: 2.4 %临汾: 0.5 %临汾: 0.5 %保定: 7.5 %保定: 7.5 %信阳: 0.5 %信阳: 0.5 %兰州: 1.4 %兰州: 1.4 %北京: 5.2 %北京: 5.2 %南京: 0.9 %南京: 0.9 %南通: 0.5 %南通: 0.5 %台州: 0.9 %台州: 0.9 %喀什: 0.5 %喀什: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 4.2 %天津: 4.2 %太原: 0.5 %太原: 0.5 %宁波: 0.5 %宁波: 0.5 %常德: 0.5 %常德: 0.5 %广州: 0.9 %广州: 0.9 %廊坊: 0.5 %廊坊: 0.5 %弗吉: 0.5 %弗吉: 0.5 %张家口: 0.9 %张家口: 0.9 %成都: 1.9 %成都: 1.9 %扬州: 1.4 %扬州: 1.4 %昆明: 0.5 %昆明: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 3.8 %杭州: 3.8 %榆林: 0.5 %榆林: 0.5 %武汉: 0.9 %武汉: 0.9 %沈阳: 0.9 %沈阳: 0.9 %沧州: 0.5 %沧州: 0.5 %济南: 0.5 %济南: 0.5 %济源: 0.9 %济源: 0.9 %温州: 0.5 %温州: 0.5 %湖州: 0.5 %湖州: 0.5 %漯河: 2.4 %漯河: 2.4 %盐城: 0.5 %盐城: 0.5 %石家庄: 2.4 %石家庄: 2.4 %福州: 0.9 %福州: 0.9 %芒廷维尤: 20.3 %芒廷维尤: 20.3 %苏州: 0.5 %苏州: 0.5 %衡阳: 0.5 %衡阳: 0.5 %衢州: 0.5 %衢州: 0.5 %西宁: 4.7 %西宁: 4.7 %西安: 0.9 %西安: 0.9 %贵阳: 0.9 %贵阳: 0.9 %运城: 3.8 %运城: 3.8 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.5 %郑州: 0.5 %金华: 0.5 %金华: 0.5 %长沙: 0.5 %长沙: 0.5 %其他其他China[]上海东莞临汾保定信阳兰州北京南京南通台州喀什嘉兴天津太原宁波常德广州廊坊弗吉张家口成都扬州昆明晋城朝阳杭州榆林武汉沈阳沧州济南济源温州湖州漯河盐城石家庄福州芒廷维尤苏州衡阳衢州西宁西安贵阳运城遵义邯郸郑州金华长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (587) PDF downloads(20) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return