Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YIN Jingchen, DING Han, LI Zeli, LI Xue, LI Guoguang, WANG Yuqiu. RESEARCH PROGRESS OF NON-POINT SOURCE POLLUTION SIMULATION BASED ON SPARROW MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 253-260,294. doi: 10.13205/j.hjgc.202206032
Citation: YIN Jingchen, DING Han, LI Zeli, LI Xue, LI Guoguang, WANG Yuqiu. RESEARCH PROGRESS OF NON-POINT SOURCE POLLUTION SIMULATION BASED ON SPARROW MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 253-260,294. doi: 10.13205/j.hjgc.202206032

RESEARCH PROGRESS OF NON-POINT SOURCE POLLUTION SIMULATION BASED ON SPARROW MODEL

doi: 10.13205/j.hjgc.202206032
  • Received Date: 2021-11-19
    Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • With the effective control of point source pollution,non-point source pollution has gradually become the main focus of water environment management in China.However,the source and transport of non-point source pollution are hard to monitor,and models are usually necessary.Based on the comparison of the statistical model and the mechanism model for non-point source pollution simulation,SPARROW (SPAtially referenced regressions on watershed attributes) was proved to be a more practical model between the statistical model and the mechanism model,which is a hybrid (statistical and mechanistic) watershed model,and widely used in many countries and regions.By summarizing the different aspects of the model,such as nutrient transport,scenario analysis,combining with other methods,and the improvement of the model,the following conclusions can be drawn:1) SPARROW model can meet the demand of watershed management in China since it doesn't need huge data and its establishment is not very difficult;2) SPARROW model is spatially explicit,and it could estimate the delivery of pollutants from subbasins towards the outlet,therefore,it can provide sufficient support for the simulation of non-point source pollution;3) SPARROW model can be more widely used by improving uncertainty analysis,temporal resolution,and spatial difference.
  • [1]
    代义彬,郎赟超,王铁军,等. SPARROW模型及其应用研究进展[J].地球与环境, 2019, 47(3):397-404.
    [2]
    于维坤,尹炜,叶闽,等.面源污染模型研究进展[J].人民长江, 2008, 39(23):83-87.
    [3]
    王凯,陈磊,杨念,等.从田块到水体:基于源-流-汇理念的非点源污染全过程核算方法[J].环境科学学报, 2022, 4(1):1-11.
    [4]
    RISSMAN A R, CARPENTER S R. Progress on nonpoint pollution:barriers&opportunities[J]. Daedalus, 2015, 144(3):35-47.
    [5]
    夏军,翟晓燕,张永勇.水环境非点源污染模型研究进展[J].地理科学进展, 2012, 31(7):941-952.
    [6]
    YUAN L F, SINSHAW T, FORSHAY K J. Review of watershed-scale water quality and nonpoint source pollution models[J]. Geosciences, 2020, 10(1):25.
    [7]
    耿润哲,梁璇静,殷培红,等.面源污染最佳管理措施多目标协同优化配置研究进展[J].生态学报, 2019, 39(8):2667-2675.
    [8]
    VEGA M, PARDO R, BARRADO E, et al. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis[J]. Water Research, 1998, 32(12):3581-3592.
    [9]
    BENGRAINE K, MARHABA T F. Using principal component analysis to monitor spatial and temporal changes in water quality[J]. Journal of Hazardous Materials, 2003, 100(1/2/3):179-195.
    [10]
    SINGH K P, MALIK A, SINHA S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques:a case study[J]. Analytica Chimica Acta, 2005, 538(1/2):355-374.
    [11]
    GURJAR S K, TARE V. Spatial-temporal assessment of water quality and assimilative capacity of river Ramganga, a tributary of Ganga using multivariate analysis and QUEL2K[J]. Journal of Cleaner Production, 2019, 222:550-564.
    [12]
    李艳红,葛刚,胡春华,等.基于聚类分析和因子分析的鄱阳湖流域水质时空变化特征及污染源分析[J].南昌大学学报(理科版), 2016, 40(4):360-365.
    [13]
    项颂,庞燕,窦嘉顺,等.不同时空尺度下土地利用对洱海入湖河流水质的影响[J].生态学报, 2018, 38(3):876-885.
    [14]
    张家欣.太湖流域水质空间分布状况与污染源识别[J].江苏科技信息, 2021, 38(10):48-54.
    [15]
    后希康,张凯,段平洲,等.基于APCS-MLR模型的沱河流域污染来源解析[J].环境科学研究, 2021, 34(10):2350-2357.
    [16]
    KHADAM I M, KALUARACHCHI J J. Water quality modeling under hydrologic variability and parameter uncertainty using erosion-scaled export coefficients[J]. Journal of Hydrology, 2006, 330(1/2):354-367.
    [17]
    ROBINSON T H, MELACK J M. Modeling nutrient export from coastal california watersheds[J]. Journal of the American Water Resources Association, 2013, 49(4):793-809.
    [18]
    WORRALL F, DAVIES H, BURT T, et al. The flux of dissolved nitrogen from the UK:evaluating the role of soils and land use[J]. Science of the Total Environment, 2012, 434:90-100.
    [19]
    HANRAHAN G, GLEDHILL M, HOUSE W A, et al. Phosphorus loading in the Frome catchment, UK:seasonal refinement of the coefficient modeling approach[J]. Journal of Environmental Quality, 2001, 30(5):1738-1746.
    [20]
    MATIAS N G, JOHNES P J. Catchment phosphorous losses:an export coefficient modelling approach with scenario analysis for water management[J]. Water Resources Management, 2012, 26(5):1041-1064.
    [21]
    宋大平,左强,刘本生,等.农业面源污染中氮排放时空变化及其健康风险评价研究:以淮河流域为例[J].农业环境科学学报, 2018, 37(6):1219-1231.
    [22]
    韦晓雪,李晓琳,郑毅.基于输出系数模型的1998-2016年洱海流域磷素时空变化特征分析[J].农业环境科学学报, 2020, 39(1):171-181.
    [23]
    ARNOLD J G, ALLEN P M. Estimating hydrologic budgets for three Illinois watersheds[J]. Journal of Hydrology, 1996, 176(1):57-77.
    [24]
    张京,郑华,何梦男,等.流域水环境污染模拟及关键源区鉴别:以义乌江流域为例[J].环境工程学报, 2021, 15(4):1167-1177.
    [25]
    da SILVA BURIGATO COSTA C M, MARQUES L D S, ALMEIDA A K, et al. Applicability of water quality models around the world:a review[J]. Environmental Science and Pollution Research, 2019, 26(36):36141-36162.
    [26]
    SCHWARZ G, HOOS A B, ALEXANDER R B, et al. Section 3. The SPARROW surface water-quality model:theory, application and user documentation[R]. Reston, VA:U. S. Geological Survey, 2006.
    [27]
    SMITH R A, SCHWARZ G E, ALEXANDER R B. Regional interpretation of water-quality monitoring data[J]. Water Resources Research, 1997, 33(12):2781-2798.
    [28]
    ALEXANDER R B, SMITH R A, SCHWARZ G E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico[J]. Nature, 2000, 403(6771):758-761.
    [29]
    HOOS A B, MCMAHON G. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks[J]. Hydrological Processes, 2009, 23(16):2275-2294.
    [30]
    ROBERTSON D M, SAAD D A. Nutrient inputs to the laurentian great lakes by source and watershed estimated using SPARROW watershed models1[J]. JAWRA Journal of the American Water Resources Association, 2011, 47(5):1011-1033.
    [31]
    REBICH R A, HOUSTON N A, MIZE S V, et al. Sources and delivery of nutrients to the northwestern gulf of mexico from streams in the south-central united states1[J]. Journal of the American Water Resources Association, 2011, 47(5):1061-1086.
    [32]
    BROWN J B, SPRAGUE L A, DUPREE J A. Nutrient sources and transport in the Missouri River basin, with emphasis on the effects of irrigation and reservoirs1[J]. Journal of the American Water Resources Association, 2011, 47(5):1034-1060.
    [33]
    ELLIOTT A H, ALEXANDER R B, SCHWARZ G E, et al. Estimation of nutrient sources and transport for New Zealand using the hybrid mechanistic-statistical model SPARROW[J]. Journal of Hydrology-New Zealand, 2005, 44(1):1-27.
    [34]
    DUAN W L, HE B, TAKARA K, et al. Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW[J]. Hydrology and Earth System Sciences, 2015, 19(3):1293-1306.
    [35]
    BENOY G A, JENKINSON R W, ROBERTSON D M, et al. Nutrient delivery to Lake Winnipeg from the RedAssiniboine River Basin:a binational application of the SPARROW model[J]. Canadian Water Resources Journal, 2016, 41(3):429-447.
    [36]
    LI X, WELLEN C, LIU G X, et al. Estimation of nutrient sources and transport using spatially referenced regressions on watershed attributes:a case study in Songhuajiang River Basin, China[J]. Environmental Science and Pollution Research, 2015, 22(9):6989-7001.
    [37]
    卢诚,李国光,齐作达,等. SPARROW模型的传输过程研究:以新安江流域总氮为例[J].水资源与水工程学报, 2017, 28(1):7-13.
    [38]
    杨中文,张萌,郝彩莲,等.基于源汇过程模拟的鄱阳湖流域总磷污染源解析[J].环境科学研究, 2020, 33(11):2493-2506.
    [39]
    DAI Y B, LANG Y C, WANG T J, et al. Modelling the sources and transport of ammonium nitrogen with the SPARROW model:a case study in a karst basin[J]. Journal of Hydrology, 2021, 592:125763.
    [40]
    NAUMAN T W, ELY C P, MILLER M P, et al. Salinity yield modeling of the upper colorado river basin using 30-m resolution soil maps and random forests[J]. Water Resources Research, 2019, 55(6):4954-4973.
    [41]
    WELLEN C C, SHATILLA N J, CAREY S K. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada[J]. Science of the Total Environment, 2015, 532:791-802.
    [42]
    BRAKEBILL J W, ATOR S W, SCHWARZ G E. Sources of suspended-sediment flux in streams of the chesapeake bay watershed:a regional application of the SPARROW model1[J]. Journal of the American Water Resources Association, 2010, 46(4):757-776.
    [43]
    HERRMANN M, NAJJAR R G, KEMP W M, et al. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries:a synthesis approach[J]. Global Biogeochemical Cycles, 2015, 29(1):96-111.
    [44]
    ROBERTSON D M, SAAD D A, CHRISTIANSEN D E, et al. Simulated impacts of climate change on phosphorus loading to Lake Michigan[J]. Journal of Great Lakes Research, 2016, 42(3):536-548.
    [45]
    ZHANG W S, PUEPPKE S G, LI H P, et al. Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion[J]. Environmental Pollution, 2019, 255:113273.
    [46]
    ALAM M J, GOODALL J L, BOWES B D, et al. The impact of projected climate change scenarios on nitrogen yield at a regional scale for the contiguous united states[J]. Journal of the American Water Resources Association, 2017, 53(4):854-870.
    [47]
    MORALES-MARÍN L A, WHEATER H S, LINDENSCHMIDT K E. Assessment of nutrient loadings of a large multipurpose prairie reservoir[J]. Journal of Hydrology, 2017, 550:166-185.
    [48]
    MORALES-MARIN L, WHEATER H, LINDENSCHMIDT K E. Potential changes of annual-averaged nutrient export in the south saskatchewan river basin under climate and land-use change scenarios[J]. Water, 2018, 10(10):1438.
    [49]
    MILLER M P, CAPEL P D, GARCIA A M, et al. Response of nitrogen loading to the chesapeake bay to source reduction and land use change scenarios:a SPARROW-informed analysis[J]. Journal of the American Water Resources Association, 2020, 56(1):100-112.
    [50]
    MILLER M P, de SOUZA M L, ALEXANDER R B, et al. Application of the RSPARROW modeling tool to estimate total nitrogen sources to streams and evaluate source reduction management scenarios in the Grande River Basin, Brazil[J]. Water, 2020, 12(10):2911.
    [51]
    LI G G, WANG Q X, LIU G H, et al. A successful approach of the first ecological compensation demonstration for crossing provinces of downstream and upstream in China[J]. Sustainability, 2020, 12(15):1-18.
    [52]
    刘庄,晁建颖,张丽,等.中国非点源污染负荷计算研究现状与存在问题[J].水科学进展, 2015, 26(3):432-442.
    [53]
    杨雯,敖天其,王文章,等.基于输出系数模型的琼江流域(安居段)农村非点源污染负荷评估[J].环境工程, 2018, 36(10):140-144.
    [54]
    ONGLEY E D, ZHANG X L, YU T. Current status of agricultural and rural non-point source pollution assessment in China[J]. Environmental Pollution, 2010, 158(5):1159-1168.
    [55]
    王秀娟,刘瑞民,宫永伟,等.香溪河流域土地利用格局演变对非点源污染的影响研究[J].环境工程学报, 2011, 5(5):1194-1200.
    [56]
    QI J Y, ZHANG X S, YANG Q C, et al. SWAT ungauged:water quality modeling in the upper mississippi river basin[J]. Journal of Hydrology, 2020, 584:124601.
    [57]
    PRESTON S D, ALEXANDER R B, SCHWARZ G E, et al. Factors affecting stream nutrient loads:a synthesis of regional SPARROW model results for the Continental United States1[J]. Journal of the American Water Resources Association, 2011, 47(5):891-915.
    [58]
    薛利红,杨林章.面源污染物输出系数模型的研究进展[J].生态学杂志, 2009, 28(4):755-761.
    [59]
    GASSMAN P W, REYES M R, GREEN C H, et al. The soil and water assessment tool:historical development, applications, and future research directions[J]. Transactions of the Asabe, 2007, 50(4):1211-1250.
    [60]
    KIM D K, KALUSKAR S, MUGALINGAM S, et al. A Bayesian approach for estimating phosphorus export and delivery rates with the spatially referenced regression on watershed attributes (SPARROW) model[J]. Ecological Informatics, 2017, 37:77-91.
    [61]
    CHANAT J G, YANG G X. Exploring drivers of regional water-quality change using differential spatially referenced regression:a pilot study in the Chesapeake Bay Watershed[J]. Water Resources Research, 2018, 54(10):8120-8145.
    [62]
    ALEXANDER R B, SCHWARZ G E, BOYER E W. Advances in quantifying streamflow variability across continental scales:1. identifying natural and anthropogenic controlling factors in the USA using a spatially explicit modeling method[J]. Water Resources Research, 2019, 55(12):10893-10917.
    [63]
    ALEXANDER R B, SCHWARZ G E, BOYER E W. Advances in quantifying streamflow variability across continental scales:2. improved model regionalization and prediction uncertainties using hierarchical bayesian methods[J]. Water Resources Research, 2019, 55(12):11061-11087.
  • Relative Articles

    [1]LIU Xiaorui, WANG Zhimin, WANG Yinlong. POLLUTION REDUCTION OF INFLOW RIVERS OF THE TIEGANG RESERVOIR IN BAO’AN DISTRICT, SHENZHEN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 26-32. doi: 10.13205/j.hjgc.202410004
    [2]TIAN Weichao, CHEN Rongxu, TIAN Shimin, WANG Xin, LIU Jiaxin. EFFECT OF POLYPLOID ARUNDO DONAX L. ON POLLUTION CONTROL OF SLOPE RUNOFF IN HILLY AREA IN WEST HENAN PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 60-65. doi: 10.13205/j.hjgc.202412008
    [3]WANG Yan, WANG Jie, XIE Zijian, LI Chunhua, YE Chun, MIAO Kexin, WEI Weiwei, ZHENG Ye. NON-POINT SOURCE POLLUTIONS IN TYPICAL RIVER BASINS IN HILLY AND MOUNTAINOUS AREAS AND PLAIN RIVER NETWORK AREA IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 33-40. doi: 10.13205/j.hjgc.202410005
    [4]FU Shuai, PENG Yuxin, XU Bingxian. SPATIAL AND TEMPORAL EVOLUTION OF CARBON STORAGE IN POYANG LAKE BASIN BASED ON PLUS AND INVEST MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 163-172. doi: 10.13205/j.hjgc.202310020
    [5]WU Mengli, ZHANG Xianghan, WANG Hongyu, XU Dongjian, CHEN Wufen. APPLICATION OF WATER QUANTITY AND QUALITY JOINT CONTROL MODEL IN QIANSHAN RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 160-164. doi: 10.13205/j.hjgc.202311025
    [6]ZHANG Xiuhong, LI Renge, ZHAO Yueshuai, GAO Linting, NING Bo. ANALYSIS OF DIFFUSE POLLUTION CHARACTERISTICS IN AGRICULTURAL SPACE IN XI'AN BASED ON DPeRS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 142-149. doi: 10.13205/j.hjgc.202312017
    [7]GAO Wei, CHEN Yan, YAN Changan, LIU Yong. SOURCE IDENTIFICATION OF PHOSPHORUS IN VARIOUS DISTURBED RIVERS BASED ON LAM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 55-62. doi: 10.13205/j.hjgc.202206007
    [8]WANG Xuelian, LIU Bo, ZHAO Changsen, HUANG Zhenfang, PAN Xu. STUDY ON CALCULATION METHOD SYSTEM OF POLLUTANT LOAD FROM NON-POINT SOURCE INTO RIVERS IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 166-172,211. doi: 10.13205/j.hjgc.202203025
    [9]ZHANG Zhi-jie, WEN Fei, ZHANG Ya-qun, ZHOU Jing, FENG Ai-ping. CHARACTERISTICS AND SOURCE ANALYSIS OF NON-POINT SOURCE POLLUTION LOAD IN THE YELLOW RIVER BASIN ON A REGIONAL SCALE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 81-88,142. doi: 10.13205/j.hjgc.202209011
    [10]QIAO Yu, YAN Zhen-fei, FENG Cheng-lian, LIU Na, LIAO Wei, HONG Ya-jun, LIU Da-qing, BAI Ying-chen. APPLICATIONS AND DIFFERENCES ANALYSIS OF SEVERAL TYPICAL MODELS IN SPECIES SENSITIVITY DISTRIBUTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 85-92,109. doi: 10.13205/j.hjgc.202110012
    [11]LIU Qian, WANG Wei, LUO Bin, WANG Kang. CONTRIBUTION OF POLLUTION REDUCTION MEASURES AND METEOROLOGICAL CONDITIONS TO IMPROVEMENT OF WATER ENVIRONMENT OF THE MINJIANG RIVER BASIN IN THE MIDDLE OF THE 13TH FIVE-YEAR PLAN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 45-54. doi: 10.13205/j.hjgc.202105007
    [12]ZHANG Zi-yang, QI Hao, ZHANG Xiao-ran, LI Hai-yan. INFLUENCING MECHANISM OF PERMEABLE PAVEMENT TYPE ON REMOVAL EFFICIENCY OF HEAVY METALS FROM RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 41-46,88. doi: 10.13205/j.hjgc.202102007
    [13]GAO Shang, HU Peng, CUI Song, ZHANG Zu-lin, XING Zhen-xiang, ZHANG Fu-xiang. NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 83-89. doi: 10.13205/j.hjgc.202010013
    [14]LI Bing, QIU Yong, TIAN Yu-xin, ZHU Yin, WANG Yan, ZHENG Kai-kai, LI Ji. PERFORMANCE EVALUATION AND SCENARIO SIMULATION FOR PROCESS RETROFITTING OF WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 93-99. doi: 10.13205/j.hjgc.202007015
    [15]GUO Min-peng, HOU Jing-ming, FU De-yu, KANG Yong-de, SHI Bao-shan, LI Chang-hao. HIGH PERFORMANCE NUMERICAL SIMULATION METHOD FOR NON-POINT SOURCE POLLUTION TRANSFER PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 160-166,173. doi: 10.13205/j.hjgc.202008027
  • Cited by

    Periodical cited type(3)

    1. 蒙小俊,王昕婕,朱妮,葛光环. 陕西省农业面源污染时空特征及污染源. 湖北农业科学. 2024(02): 224-231 .
    2. 蒙小俊,庞嘉慧. 汉江流域安康段农业面源污染负荷预测及时空演变分析. 环境保护科学. 2024(04): 138-144 .
    3. 蒙小俊. 农业面源污染研究进展. 中南农业科技. 2023(09): 237-240 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.6 %FULLTEXT: 9.6 %META: 87.8 %META: 87.8 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.3 %其他: 21.3 %其他: 0.5 %其他: 0.5 %Research: 0.3 %Research: 0.3 %[]: 1.0 %[]: 1.0 %上海: 0.5 %上海: 0.5 %东莞: 2.3 %东莞: 2.3 %临汾: 0.3 %临汾: 0.3 %元朗新墟: 0.3 %元朗新墟: 0.3 %北京: 8.9 %北京: 8.9 %南京: 3.0 %南京: 3.0 %南宁: 0.3 %南宁: 0.3 %南昌: 0.5 %南昌: 0.5 %台州: 0.5 %台州: 0.5 %吉林: 0.3 %吉林: 0.3 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸阳: 0.8 %咸阳: 0.8 %哈尔滨: 0.3 %哈尔滨: 0.3 %大庆: 0.3 %大庆: 0.3 %天津: 1.3 %天津: 1.3 %宜宾: 0.3 %宜宾: 0.3 %宣城: 0.3 %宣城: 0.3 %常德: 0.3 %常德: 0.3 %广州: 3.8 %广州: 3.8 %延安: 0.3 %延安: 0.3 %张家口: 1.3 %张家口: 1.3 %成都: 2.0 %成都: 2.0 %扬州: 0.5 %扬州: 0.5 %抚顺: 0.3 %抚顺: 0.3 %新德里: 0.8 %新德里: 0.8 %无锡: 0.3 %无锡: 0.3 %昆明: 0.5 %昆明: 0.5 %晋城: 1.0 %晋城: 1.0 %朝阳: 0.8 %朝阳: 0.8 %杭州: 1.0 %杭州: 1.0 %松原: 0.3 %松原: 0.3 %武汉: 5.8 %武汉: 5.8 %济源: 0.5 %济源: 0.5 %海口: 0.3 %海口: 0.3 %淮安: 0.3 %淮安: 0.3 %深圳: 2.0 %深圳: 2.0 %温州: 0.3 %温州: 0.3 %湖州: 1.3 %湖州: 1.3 %漯河: 2.3 %漯河: 2.3 %石家庄: 0.3 %石家庄: 0.3 %芒廷维尤: 14.4 %芒廷维尤: 14.4 %芝加哥: 1.8 %芝加哥: 1.8 %衡水: 0.3 %衡水: 0.3 %衢州: 0.3 %衢州: 0.3 %西宁: 7.1 %西宁: 7.1 %西安: 0.3 %西安: 0.3 %贵阳: 0.5 %贵阳: 0.5 %赤峰: 0.3 %赤峰: 0.3 %运城: 2.0 %运城: 2.0 %遵义: 0.3 %遵义: 0.3 %邢台: 1.0 %邢台: 1.0 %郑州: 0.8 %郑州: 0.8 %重庆: 0.3 %重庆: 0.3 %银川: 0.3 %银川: 0.3 %长沙: 1.3 %长沙: 1.3 %青岛: 0.3 %青岛: 0.3 %黄山: 0.3 %黄山: 0.3 %其他其他Research[]上海东莞临汾元朗新墟北京南京南宁南昌台州吉林呼和浩特咸阳哈尔滨大庆天津宜宾宣城常德广州延安张家口成都扬州抚顺新德里无锡昆明晋城朝阳杭州松原武汉济源海口淮安深圳温州湖州漯河石家庄芒廷维尤芝加哥衡水衢州西宁西安贵阳赤峰运城遵义邢台郑州重庆银川长沙青岛黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (346) PDF downloads(11) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return