Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHE Yue-chi, YAN Bei-bei, WANG Xu-tong, CHEN Guan-yi, DAN Zeng, MENG De-an. RESEARCH PROGRESS OF TECHNICAL OPTIMIZATION OF SEWAGE SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 164-173. doi: 10.13205/j.hjgc.202104025
Citation: CHEN Weidong, WEN Donghui. ADVANCES IN SPATIAL-TEMPORAL DISTRIBUTION AND ASSEMBLY MECHANISMS OF MICROBIAL COMMUNITY IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 1-13,39. doi: 10.13205/j.hjgc.202208001

ADVANCES IN SPATIAL-TEMPORAL DISTRIBUTION AND ASSEMBLY MECHANISMS OF MICROBIAL COMMUNITY IN WASTEWATER TREATMENT SYSTEMS

doi: 10.13205/j.hjgc.202208001
  • Received Date: 2021-08-20
  • Publish Date: 2022-11-08
  • Exploring the spatial-temporal distribution and assembly mechanisms of microbial communities have always been the goal and challenge in environmental microbial ecology. In recent years, the patterns and theories of microbial ecology have been gradually applied to engineering systems. Taxa-area relationship, taxa-time relationship, and distance decay effect have been verified in the microbial community distribution of wastewater treatment systems. In addition, microbial spatial-temporal distribution has been expanded from the discovery and description of community distribution to the driving factors identification that shape community distribution, i.e., the community assembly mechanisms. Here, we reviewed the spatial-temporal distribution and assembly mechanisms of the microbial community in wastewater treatment systems and foresee future development. We emphasized the importance of combining ecological theory with engineering practices. In the future, breakthroughs can be made in the relationships among microbial biodiversity, assembly mechanisms, and wastewater treatment performance; core taxa and rare biosphere research; and the exploitation of microbial spatio-temporal distribution and assembly mechanisms using multi-omics technology.
  • [1]
    FERRERA I,SÁNCHEZ O.Insights into microbial diversity in wastewater treatment systems:how far have we come?[J].Biotechnology Advances,2016,34(5):790-802.
    [2]
    CHEN Y W,LAN S H,WANG L H,et al.A review:driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J].Chemosphere,2017,174(2):173-182.
    [3]
    WU L W,NING D L,ZHANG B,et al.Global diversity and biogeography of bacterial communities in wastewater treatment plants[J].Nature Microbiology,2019,4(7):1183-1195.
    [4]
    WANG X H,WEN X H,DENG Y,et al.Distance-decay relationship for biological wastewater treatment plants[J].Applied and Environmental Microbiology,2016,82(16):4860-4866.
    [5]
    ZHANG B,NING D L,NOSTRAND J D V,et al.The biogeography and assembly of microbial communities in wastewater treatment plants in China[J].Environmental Science & Technology,2020,54(9):5884-5892.
    [6]
    van der GAST C J,JEFFERSON B,REID E,et al.Bacterial diversity is determined by volume in membrane bioreactors[J].Environmental Microbiology,2006,8(6):1048-1055.
    [7]
    van der GAST C J,AGER D,LILLEY A K.Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors[J].Environmental Microbiology,2008,10(6):1411-1418.
    [8]
    HAI R T,WANG Y L,WANG X H,et al.Bacterial community dynamics and taxa-time relationships within two activated sludge bioreactors[J].PLoS One,2014,9(3):e90175.
    [9]
    PRESTON F W.Time and space and the variation of species[J].Ecology,1960,41:611-627.
    [10]
    褚海燕,冯毛毛,柳旭,等.土壤微生物生物地理学:国内进展与国际前沿[J].土壤学报,2020,57(3):515-529.
    [11]
    CHEN W D,REN K X,ISABWE A,et al.Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons[J].Microbiome,2019,14,7(1):138-148.
    [12]
    CHEN W D,WEN D H.Archaeal and bacterial communities assembly and co-occurrence networks in subtropical mangrove sediments under Spartina alterniflora invasion[J].Environmental Microbiome,2021,16:10.
    [13]
    DAI T J,ZHANG Y,TANG Y S,et al.Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification:a case study of microbial communities in the sediments of Hangzhou Bay[J].FEMS Microbiology Ecology,2016,92:fiw150.
    [14]
    ZHANG Y,CHEN L J,SUN R H,et al.Population and diversity of ammonia-oxidizing archaea and bacteria in a pollutants’ receiving area in Hangzhou Bay[J].Applied Microbiology and Biotechnology,2016,100(13):6035-6045.
    [15]
    DAI T J,ZHANG Y,NING D L,et al.Dynamics of sediment microbial functional capacity and community interaction networks in an urbanized coastal estuary[J].Frontiers in Microbiology,2018,9:2731.
    [16]
    DAI T J,ZHAO Y N,NING D L,et al.Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate[J].Environmental Pollution,2020,260:113971.
    [17]
    ZHANG Y,CHEN L J,SUN R H,et al.Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China[J].Applied Microbiology Biotechnology,2015,99(10):4495-4507.
    [18]
    ZHANG Y,CHEN L J,SUN R H,et al.Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay[J].Journal of Environmental Sciences,2016b,44:57-68.
    [19]
    JU F,ZHANG T.Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant[J].The ISME Journal,2015,9(3):683-695.
    [20]
    XIA Y,HU M,WEN X H,et al.Diversity and interactions of microbial functional genes under differing environmental conditions:insights from a membrane bioreactor and an oxidation ditch[J].Scientific Reports,2016,6:18509.
    [21]
    MCGILL B J,ETIENNE R S,GRAY J S,et al.Species abundance distributions:moving beyond single prediction theories to integration within an ecological framework[J].Ecology Letters,2007,10(10):995-1015.
    [22]
    SHOEMAKER W R,LOCEY K J,LENNON J T.A macroecological theory of microbial biodiversity[J].Nature Ecology & Evolution,2017,1(5):107.
    [23]
    SHU D T,YUE H,HE Y L,et al.Divergent assemblage patterns of abundant and rare microbial sub-communities in response to inorganic carbon stresses in a simultaneous anammox and denitrification (SAD) system[J].Bioresource Technology,2018,257:249-259.
    [24]
    LIÉBANA R,MODIN O,PERSSON F,et al.Combined deterministic and stochastic processes control microbial succession in replicate granular biofilm reactors[J].Environmental Science & Technology,2019,53(9):4912-4921.
    [25]
    JIANG Y M,HUANG H Y,TIAN Y R,et al.Stochasticity versus determinism:microbial community assembly patterns under specific conditions in petrochemical activated sludge[J].Journal of Hazardous Materials,2020,407:124372.
    [26]
    褚海燕,王艳芬,时玉,等.土壤微生物生物地理学研究现状与发展态势[J].中国科学院院刊,2017(6):585-592.
    [27]
    BAAS-BECKING L G M.Geobiologie of inleiding tot de milieukunde[M].The Netherlands:WP Van Stockum & Zoon:The Hague;1934.
    [28]
    MARTINY J B H,BOHANNAN B J M,BROWN J H,et al.Microbial biogeography:putting microorganisms on the map[J].Nature Reviews Microbiology,2006,4(2):102-112.
    [29]
    VALENTÍN-VARGAS A,TORO-LABRADOR G,MASSOL-DEYA A A.Bacterial community dynamics in full-scale activated sludge bioreactors:operational and ecological factors driving community assembly and performance[J].PLoS One,2012,7(8):e42524.
    [30]
    KIM T S,JEONG J Y,WELLS G F,et al.General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor[J].Applied Microbiology & Biotechnology,2013,97(4):1755-1765.
    [31]
    GRAHAM D W,CURTIS T P.Ecological theory and bioremediation.In:Head I,Singleton I,and Milner MG (Eds).Bioremediation:a critical review[M].Wymondham,UK:Horizon Scientific Press.2003.
    [32]
    GRAHAM D W,SMITH V H.Designed ecosystem services:application of ecological principles in wastewater treatment engineering[J].Frontiers in Ecology and the Environment,2004,2(4):199-206.
    [33]
    SMITH V H,CLELAND D L,GRAHAM D W.Application of resource-ratio theory to hydrocarbon bioremediation[J].Environmental Science & Technology,1998,32:3386-3395.
    [34]
    RÖLING W F M,MILNER M G,JONES D M,et al.Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation[J].Applied Environmental Microbiology,2002,68:5537-5548.
    [35]
    TILMAN D.Resource competition and community structure[M].Princeton,NJ:Princeton University Press.1982.
    [36]
    SONG Y,MHUANTONG W,LIU S Y,et al.Tropical and temperate wastewater treatment plants assemble different and diverse microbiomes[J].Applied Microbiology and Biotechnology,2021,105(3):853-867.
    [37]
    JIAO S,YANG Y F,XU Y Q,et al.Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China[J].The ISME Journal,2020,14:202-216.
    [38]
    ZHOU J Z,NING D L.Stochastic community assembly:does it matter in microbial ecology?[J].Microbiology and Molecular Biology Reviews,2017,81(4):e00002-17.
    [39]
    WANG X H,HU M,XIA Y,et al.Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China[J].Applied Environmental Microbiology,2012,78(19):7042-7047.
    [40]
    SLOAN W T,LUNN M,WOODCOCK S,et al.Quantifying the roles of immigration and chance in shaping prokaryote community structure[J].Environmental Microbiology,2006,8(4):732-740.
    [41]
    OFIŢERU I D,LUNN M,CURTIS T P,et al.Combined niche and neutral effects in a microbial wastewater treatment community[J].Proceedings of the National Academy of Sciences,2010,107(35):15345-15350.
    [42]
    YU J J,TANG S N,LEE P K H.Microbial communities in full-scale wastewater treatment systems exhibit deterministic assembly processes and functional dependency over time[J].Environmental Science & Technology,2021,55(8):5312-5323.
    [43]
    STEGEN J C,LIN X,FREDRICKSON J K,et al.Quantifying community assembly processes and identifying features that impose them[J].The ISME Journal,2013,7(11):2069-2079.
    [44]
    NING D L,DENG Y,TIEDJE J M,et al.A general framework for quantitatively assessing ecological stochasticity[J].Proceedings of the National Academy of Sciences,2019,116(34):16892-16898.
    [45]
    CHEN W D,PAN Y B,YU L Y,et al.Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments,southeast China[J].Frontiers in Microbiology,2017,8:1912.
    [46]
    WANG W P,REN K X,CHEN H H,et al.Seven-year dynamics of testate amoeba communities driven more by stochastic than deterministic processes in two subtropical reservoirs[J].Water Research,2020,185:116232.
    [47]
    ZHOU J Z,LIU W Z,DENG Y,et al.Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community[J].Mbio,2013,4(2):e00584-12.
    [48]
    SUN C X,ZHANG B,NING D L,et al.Seasonal dynamics of the microbial community in two full-scale wastewater treatment plants:diversity,composition,phylogenetic group based assembly and co-occurrence pattern[J].Water Research,2021:117295.
    [49]
    NING D L,YUAN M T,WU L W,et al.A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming[J].Nature Communications,2020,11(1):1-12.
    [50]
    GRIFFIN J S,WELLS G F.Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly[J].The ISME Journal,2017,11(2):500-511.
    [51]
    AYARZA J M,ERIJMAN L.Balance of neutral and deterministic components in the dynamics of activated sludge floc assembly[J].Microbial Ecology,2011,61(3):486-495.
    [52]
    ZHANG B,NING D L,YANG Y F,et al.Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants[J].Water Research,2020,169:115276.
    [53]
    HOU L Y,MULLA S I,NIO-GARCIA J P,et al.Deterministic and stochastic processes driving the shift in the prokaryotic community composition in wastewater treatment plants of a coastal Chinese city[J].Applied Microbiology and Biotechnology,2019,103(21):9155-9168.
    [54]
    SUN C X,ZHANG B,CHEN Z,et al.Sludge retention time affects the microbial community structure:a large-scale sampling of aeration tanks throughout China[J].Environmental Pollution,2020,261:114140.
    [55]
    HOU L Y,HU A Y,CHEN S H,et al.Deciphering the assembly processes of the key ecological assemblages of microbial communities in thirteen full-scale wastewater treatment plants[J].Microbes and Environments,2019,34(2):169-179.
    [56]
    GAO Q,YANG Y F,FENG J J,et al.The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil[J].Global Ecology and Biogeography,2019,28(8):1-13.
    [57]
    SHADE A,CAPORASO J G,HANDELSMAN J,et al.A meta-analysis of changes in bacterial and archaeal communities with time[J].The ISME Journal,2013,7:1493-1506.
    [58]
    夏瑜.城市污水处理系统微生物多样性和时间动态变化[D].北京:清华大学,2016.
    [59]
    YUAN H Y,MEI R,LIAO J H,et al.Nexus of stochastic and deterministic processes on microbial community assembly in biological systems[J].Frontiers in Microbiology,2019,10:1252.
    [60]
    NIEDERDORFER R,FRAGNER L,YUAN L,et al.Distinct growth stages controlled by the interplay of deterministic and stochastic processes in functional anammox biofilms[J].Water Research,2021,200:117225.
    [61]
    TANG Y S,DAI T J,SU Z G,et al.A tripartite microbial-environment network indicates how crucial microbes influence the microbial community ecology[J].Microbial Ecology,2020,79(2):342-356.
    [62]
    BANERJEE S,SCHLAEPPI K,VAN D.Keystone taxa as drivers of microbiome structure and functioning[J].Nature Reviews Microbiology,2018,16(9):567-576.
    [63]
    SONG Y,JIANG C Y,LIANG Z L,et al.Casimicrobium huifangae gen.nov.,sp.nov.,a ubiquitous “most-wanted” core bacterial taxon from municipal wastewater treatment plants[J].Applied and Environmental Microbiology,2020,86(4):e02209-19.
    [64]
    FAUST K.Open challenges for microbial network construction and analysis[J].The ISME Journal,2021:1-8.
    [65]
    WEISS S,van TREUREN W,LOZUPONE C,et al.Correlation detection strategies in microbial data sets vary widely in sensitivity and precision[J].The ISME Journal,2016,10:1669-1681.
    [66]
    ZHANG Q T,WANG M M,MA X Y,et al.High variations of methanogenic microorganisms drive full-scale anaerobic digestion process[J].Environment International,2019,126:543-551.
    [67]
    JU F,XIA Y,GUO F,et al.Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants[J].Environmental Microbiology,2014,16(8):2421-2432.
    [68]
    JIANG X T,YE L,JU F,et al.Toward an intensive longitudinal understanding of activated sludge bacterial assembly and dynamics[J].Environmental Science & Technology,2018,52(15):8224-8232.
    [69]
    BLANCHET F G,CAZELLES K,GRAVEL D.Co-occurrence is not evidence of ecological interactions[J].Ecology Letters,2020,23(7):1050-1063.
    [70]
    XU R H,YU Z,ZHANG S Q,et al.Bacterial assembly in the bio-cake of membrane bioreactors:Stochastic vs.deterministic processes[J].Water Research,2019,157:535-545.
    [71]
    YA T,DU S,LI Z Y,et al.Successional dynamics of molecular ecological network of anammox microbial communities under elevated salinity[J].Water Research,2021,188:116540.
    [72]
    ZHAO F Z,JU F,HUANG K L,et al.Comprehensive insights into the key components of bacterial assemblages in pharmaceutical wastewater treatment plants[J].Science of the Total Environment,2019,651:2148-2157.
    [73]
    ZHANG B,NING D L,NOSTRAND J,et al.The call for regional design code from the regional discrepancy of microbial communities in activated sludge[J].Environmental Pollution,2021,273:116487.
    [74]
    LI B B,PENG Z Y,ZHI L L,et al.Distribution and diversity of filamentous bacteria in wastewater treatment plants exhibiting foaming of Taihu Lake Basin,China[J].Environmental Pollution,2020,267:115644.
    [75]
    CERRUTI M,GUO B,DELATOLLA R,et al.Plant-wide systems microbiology for the wastewater industry[J].Environmental Science:Water Research & Technology,2021,7:1687-1706.
    [76]
    SAUNDERS A M,ALBERTSEN M,VOLLERTSEN J,et al.The activated sludge ecosystem contains a core community of abundant organisms[J].The ISME Journal,2016,10(1):11-20.
    [77]
    ZHANG T,SHAO M F,YE L.454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants.The ISME Journal,2012,6(6):1137-1147.
    [78]
    PHOLCHAN M K,BAPTISTA J,DAVENPORT R J,et al.Microbial community assembly,theory and rare functions[J].Frontiers in Microbiology,2013,4:68.
    [79]
    鞠峰,张彤.活性污泥微生物群落宏组学研究进展[J].微生物学通报,2019,46(8):2038-2052.
    [80]
    夏瑜,何绪文,文湘华.微生物群落多样性数学表征方法及其在污水处理系统研究中的应用[J].微生物学通报,2018,45(8):1778-1786.
    [81]
    XIA Y,WEN X H,ZHANG B,et al.Diversity and assembly patterns of activated sludge microbial communities:a review[J].Biotechnology Advances,2018,36(4):1038-1047.
    [82]
    HUANG G,LI Y,SU Y G.Effects of increasing precipitation on soil microbial community composition and soil respiration in a temperate desert,Northwestern China[J].Soil Biology & Biochemistry,2015,83:52-56.
    [83]
    崔凯,吴伟伟,刁其玉.转录组测序技术的研究和应用进展[J].生物技术通报,2019,35(7):1-9.
    [84]
    LIN X M,WANG Y Y,MA X,et al.Evidence of differential adaptation to decreased temperature by anammox bacteria[J].Environmental Microbiology,2018,20(10):3514-3528.
  • Relative Articles

    [1]YUE Liangchen, YU Miao, CHENG Jun, LIU Keliang, HUA Junjie, GUO Hao. INFLUENCE OF LIPID CONTENT AND ELECTRIC FERMENTATION VOLTAGE ON METHANE PRODUCTION FROM FOOD WASTE ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 200-207. doi: 10.13205/j.hjgc.202407022
    [2]SONG Chuxuan, TANG Wenying, LUO Shuangxue, KUANG Ge, ZHANG Wei, ZHOU Lean, GAO Yang, YUAN Yufei, SUN Shiquan. PILOT STUDY ON THE SYNERGISTIC AEROBIC COMPOSTING OF BLACK-ODOR WATER DREDGING SEDIMENT COUPLED WITH BIOMASS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 138-146. doi: 10.13205/j.hjgc.202403017
    [3]RUAN Min, WU Xikai, YANG Zhaohui, HUANG Jing, HUANG Zhongliang, LI Hui, WU Zijian, ZHANG Xuan, QIN Xiaoli, ZHANG Yanru. EFFECTS OF TEMPERATURE ON ABUNDANCE AND POTENTIAL HOST OF ARGs DURING SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 75-83. doi: 10.13205/j.hjgc.202305011
    [4]FAN Hongyong, ZHANG Wenxuan, WANG Huawei, SUN Yingjie, ZHANG Jingjing. RESEARCH PROGRESS OF PHYSICOCHEMICAL DEODORIZATION TECHNOLOGIES AND THEIR MECHANISMS IN AEROBIC COMPOSTING OF ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 270-276,285. doi: 10.13205/j.hjgc.202308034
    [5]XUE Zitao, CHU Xuefei, XING Libo, SUN Xiaojie, XING Meiyan. PYROLYSIS CHARACTERISTICS AND MATERIAL TRANSFORMATION CHARACTERISTICS OF CAMPUS ORGANIC WASTE TREATED BY VERMICOMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 82-91. doi: 10.13205/j.hjgc.202306012
    [6]LI Zhanglongxiang, TANG Yanfei, DAI Xiaohu. EFFECT OF HYPERTHERMOPHILIC PRETREATMENT ON COMPOSTING MATURATION AND BACTERIAL COMMUNITY STRUCTURE OF PUTRESCIBLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 124-131,186. doi: 10.13205/j.hjgc.202306017
    [7]ZHANG Lanxia, DU Wei, WANG Yan, XU Zhicheng, YUAN Jing, QI Chuanren, LI Jungang, LUO Wenhai, LI Yangyang, HE Wei, LI Guoxue. MATURITY AND ODOR GAS EMISSIONS DURING CO-COMPOSTING OF KITCHEN WASTE AND AGRICULTURAL AND FORESTRY WASTES WITH DIFFERENT CARBON SOURCES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 105-112,119. doi: 10.13205/j.hjgc.202211015
    [8]CHANG Yuan, ZHAN Yabin, TAO Xingling, LIU Yongdi, ZHANG Kui, YU Bo, WEI Yuquan, LI Ji. EFFECT OF EXOGENOUS ADDITIVES ON PHOSPHORUS MOBILIZATION IN PHOSPHORUS-RICH COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 112-119. doi: 10.13205/j.hjgc.202210015
    [9]LI Wenbing, BI Jiangtao, LIU Peng, HUI Zhibing, SUN Quan. CORRELATION BETWEEN THE SUCCESSION OF MICROBIAL COMMUNITY STRUCTURE AND ENVIRONMENTAL FACTORS AND MATURITY OF CATTLE MANURE AEROBIC COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 69-77. doi: 10.13205/j.hjgc.202201011
    [10]HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014
    [11]XIONG Ying, BAI Dong-rui, ZHANG Tao, LIU Yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, YANG Ting, JIN Jun, ZHOU Ping, GUO Fang. FEASIBILITY INVESTIGATION ON AEROBIC COMPOSTING OF MUNICIPAL SLUDGE SUPPLEMENTED WITH LESS PROPORTION OF GREEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 153-160. doi: 10.13205/j.hjgc.202103022
    [12]XU Yu-lu, QIAO Zi-ru, CHU Si-qin, SU Ying-long, XIE Bing. RESEARCH PROGRESS ON OCCURRENCE AND CONTROL OF EMERGING POLLUTANTS IN PROCESS OF SLUDGE RECYCLING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 146-153. doi: 10.13205/j.hjgc.202109021
    [13]LOU Di-ming, ZHANG Jiu-yang, TAN Pi-qiang, HU Zhi-yuan. TEST AND ANALYSIS ON FUELING EMISSION OF B10 KITCHEN WASTE GREASE BIODIESEL FOR SHIP[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 86-90,76. doi: 10.13205/j.hjgc.202002012
    [16]Hu Hao, Wang Fan, Liu Li, He Wenzhi, Li Guangming. STUDY ON EXTRACTION PROCESS OF LIPID IN SOLID-PHASE OF KITCHEN GARBAGE BY MICROWAVE HYDRO-HEATING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 118-121. doi: 10.13205/j.hjgc.201505025
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.9 %FULLTEXT: 14.9 %META: 83.0 %META: 83.0 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 37.6 %其他: 37.6 %上海: 0.7 %上海: 0.7 %北京: 7.1 %北京: 7.1 %南京: 0.7 %南京: 0.7 %台州: 2.8 %台州: 2.8 %合肥: 0.7 %合肥: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %天津: 0.7 %天津: 0.7 %常州: 0.7 %常州: 0.7 %张家口: 1.4 %张家口: 1.4 %成都: 1.4 %成都: 1.4 %扬州: 0.7 %扬州: 0.7 %昆明: 0.7 %昆明: 0.7 %杭州: 2.8 %杭州: 2.8 %泰安: 2.1 %泰安: 2.1 %湖州: 1.4 %湖州: 1.4 %漯河: 2.1 %漯河: 2.1 %石家庄: 0.7 %石家庄: 0.7 %秦皇岛: 0.7 %秦皇岛: 0.7 %芒廷维尤: 25.5 %芒廷维尤: 25.5 %芝加哥: 0.7 %芝加哥: 0.7 %衡水: 0.7 %衡水: 0.7 %衢州: 0.7 %衢州: 0.7 %运城: 2.8 %运城: 2.8 %郑州: 0.7 %郑州: 0.7 %重庆: 2.1 %重庆: 2.1 %阜阳: 0.7 %阜阳: 0.7 %其他上海北京南京台州合肥嘉兴天津常州张家口成都扬州昆明杭州泰安湖州漯河石家庄秦皇岛芒廷维尤芝加哥衡水衢州运城郑州重庆阜阳

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (478) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return