Citation: | FENG Chao, XIONG Gaoyan, WANG Yunxia, PAN Yuan, LIU Yunqi. SYNTHESIS OF CuO-Cu1.5Mn1.5O4 COMPOSITE OXIDE BY USING A BIMETALLIC ORGANIC FRAMEWORK FOR CATALYTIC PROPANE TOTAL OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 69-77. doi: 10.13205/j.hjgc.202208009 |
[1] |
WU E,FENG X,ZHENG Y,et al.Inverse coprecipitation directed porous core-shell Mn-Co-O catalyst for efficient low temperature propane oxidation[J].ACS Sustainable Chemistry & Engineering,2020,8(14):5787-5798.
|
[2] |
FEI J B,CUI Y,YAN X H,et al.Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment[J].Advanced Materials,2008,20(3):452-456.
|
[3] |
LIAO W M,ZHAO P P,CEN B H,et al.Co-Cr-O mixed oxides for low-temperature total oxidation of propane:structural effects,kinetics,and spectroscopic investigation[J].Chinese Journal of Catalysis,2020,41(3):442-453.
|
[4] |
赵磊,王筱喃,王新,等.石化VOC废气深度净化技术开发及工业应用[J].环境工程,2016,34(增刊1):569-571,579.
|
[5] |
TOMITA A,MIKI T,TAI Y.Effect of water treatment and Ce doping of Pt/Al2O3 catalysts on Pt sintering and propane oxidation[J].Research on Chemical Intermediates,2021,47:2935-2950.
|
[6] |
WU Q,YAN J,JIANG M,et al.Phosphate-assisted synthesis of ultrathin and thermally stable alumina nanosheets as robust Pd support for catalytic combustion of propane[J].Applied Catalysis B:Environment,2021,286:119949.
|
[7] |
WANG Z,HUANG Z,BROSNAHAN J T,et al.Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion[J].Environmental Science & Technology,2019,53(9):5349-5358.
|
[8] |
李娟娟,张梦,蔡松财,等.光热催化氧化VOCs的研究进展[J].环境工程,2020,38(1):13-20.
|
[9] |
LI P,NAN C Y,WEI Z,et al.Mn3O4 nanocrystals:facile synthesis,controlled assembly,and application[J].Chemistry of Materials,2020,22(14):4232-4236.
|
[10] |
赵海楠,王健,徐文青,等.锰氧化物催化氧化挥发性有机物(VOCs)研究进展[J].环境工程,2017,37(10):157-167.
|
[11] |
CAI L N,GUO Y,LU A H,et al.The choice of precipitant and precursor in the co-precipitation synthesis of copper manganese oxide for maximizing carbon monoxide oxidation[J].Journal of Molecular Catalysis A:Chemical,2012,360:35-41.
|
[12] |
WANG J J,TIAN P,LI K X,et al.The excellent performance of nest-like oxygen-deficient Cu1.5Mn1.5O4 applied in activated carbon air-cathode microbial fuel cell[J].Bioresource Technology,2016,222:107-113.
|
[13] |
ZHAO H,ZHOU X X,PAN L Y,et al.Facile synthesis of spinel Cu1.5Mn1.5O4 microspheres with high activity for the catalytic combustion of diesel soot[J].RSC Advances,2017,7:20451-20459.
|
[14] |
LIU T K,YAO Y Y,WEI L Q,et al.Preparation and evaluation of copper-manganese oxide as a high-efficiency catalyst for CO oxidation and NO reduction by CO[J].The Journal of Physical Chemistry C,2017,121(23):12757-12770.
|
[15] |
郑海龙,廖菽欢,余林.介孔Cu-Mn复合氧化物催化氧化苯甲醇合成苯甲醛的研究[J].广东工业大学学报,2017,34(2):28-33.
|
[16] |
杨德宇,郝庆兰,赵晨晨,等.CuxMn1-xCe0.75Zr0.25Oy催化降解甲苯的性能[J].环境工程,2021,39(1):96-100.
|
[17] |
梁彦正,王学涛,罗绍峰,等.改性Cu-Mn/SAPO-34催化剂在SCR脱硝反应中的特性研究[J].燃料化学学报,2020,48(6):728-734.
|
[18] |
元宁,杜冰洁,贾晓霞,等.双金属金属有机骨架材料的制备及性能研究进展[J].应用化学,2018,35(5):18-28.
|
[19] |
牛照栋,周玲玲,关清卿,等.双金属类MOF材料的制备及应用[J].化工新型材料,2019,47(8):5-8.
|
[20] |
PENG B,FENG C,LIU S,et al.Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process[J].Catalysis Today,2018,314:122-128.
|
[21] |
LI M,WENG D,WU X D,et al.Importance of re-oxidation of palladium by interaction with lanthana for propane combustion over Pd/Al2O3 catalyst[J].Catalysis Today,2013,201:19-24.
|
[22] |
CAO Y D,RAN R,CHEN Y S,et al.Nanostructured platinum in ordered mesoporous silica as novel efficient catalyst for propane total oxidation[J].RSC Advances,2016,6:30170-30175.
|
[23] |
孙若琳,张斯然,安康,等.CuO修饰的Cu1.5Mn1.5O4尖晶石型复合氧化物对CO氧化的协同催化[J].燃料化学学报,2021,49(6):799-808.
|
[24] |
樊灏,沈振兴,逯佳琪,等.常温除甲醛催化剂Mn1Cex/HZSM-5的活性位点与性能分析[J].环境工程,2021,39(6):99-105.
|
[25] |
JEON W,CHOI I H,PARK J Y,et al.Alkaline wet oxidation of lignin over Cu-Mn mixed oxide catalysts for production of vanillin[J].Catalysis Today,2020,352:95-103.
|
[26] |
胡总,黄振鹏,王征,等.Mn-Ce催化剂的制备及其在丙烷催化燃烧中的应用[J].中国稀土学报,2018,36(4):431-436.
|
[27] |
ZHENG X H,CAI J M,CAO Y N,et al.Construction of cross-linked δ-MnO2 with ultrathin structure for the oxidation of H2S:structure-activity relationship and kinetics study[J].Applied Catalysis B:Environmental,2021,297:120402.
|
[1] | HE Jianwei, HUANG Xiaoyan, HUANG Ruonan, CAI Yang, ZHAO Fuyun. ANALYSIS OF INDOOR POLLUTANT MIGRATION CHARACTERISTICS UNDER COUPLING EFFECT OF SOLAR PHOTOCATALYSIS AND HYBRID VENTILATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 148-156. doi: 10.13205/j.hjgc.202404018 |
[2] | ZHANG Yaning, ZHU Weihuang, DONG Ying, WU Xijun, LIU Jing. EFFECT OF REDOX CONDITION AND MICROBIAL ACTION ON HEAVY METALS TRANSFORMATION IN RESERVOIR SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 101-108. doi: 10.13205/j.hjgc.202306014 |
[3] | CUI Yong, FAN Yuesheng, ZHANG Xin, WANG Huan, XUE Kexin, LI Ming, GAN Weikang. PERFORMANCE ANALYSIS AND COMPARISON OF A NEW REDUCED GRAPHENE OXIDE FILTER MATERIAL AND COMMON ELECTRET MATERIAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 201-205,240. doi: 10.13205/j.hjgc.202307027 |
[4] | SUN Ye, LI Shuaishuai, PANG Linlin, HU Xiaotu, LI Jie, LIU Yong, ZHONG Lu, ZHU Tianle. NO REMOVAL AND NITROGEN CONVERSION PERFORMANCE BY O3 OXIDATION COMBINED WITH WET ABSORPTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 171-176. doi: 10.13205/j.hjgc.202211024 |
[5] | DAI Yi, MEI Chaoqiang, LI Xue, JIN Qijie, MEI Rong, LU Yao, XU Haitao. EFFECT OF PRECURSORS ON SIMULTANEOUS CATALYTIC REMOVAL OF NITROGEN OXIDES AND CHLOROBENZENE BY MnO2[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 57-63,105. doi: 10.13205/j.hjgc.202204009 |
[6] | ZHAO Zhong-qi, ZHAO Yan, LANG Lang, HU Xiao-min, SHAN Shi-liang. PREPARATION OF Fe3O4@CNF@Zn-BTC MATERIAL AND ITS PERFORMANCE IN REMOVING PHOSPHORUS FROM WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 93-98. doi: 10.13205/j.hjgc.202108012 |
[7] | JIANG Shu-wen, WEI Shi-cheng, WANG Ting, LU Yao-bin, LIU Guang-li, LUO Hai-ping, ZHANG Ren-duo. PREPARATION OF A FENTON-LIKE Cu-Co-Fe METALLIC OXIDE CATALYST AND ITS DEGRADATION PERFORMANCE ON TYPICAL REFRACTORY ORGANICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 77-82,118. doi: 10.13205/j.hjgc.202111009 |
1. | 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . ![]() | |
2. | 尉永鹏,马会强,李爽,李聪,张林,亢琼. 污泥基生物炭的制备及其对萘的吸附性能研究. 化工新型材料. 2023(04): 281-286 . ![]() | |
3. | 江汝清,余广炜,王玉,邢贞娇,汪印. 污泥炭对厌氧发酵沼液的吸附特征. 环境科学与技术. 2022(03): 178-187 . ![]() | |
4. | 蒋玉柱,惠贺龙,刘弘毅,丁广超,卢文义,李松庚. 印染污泥基生物炭吸附处理难降解有机废水. 环境工程. 2022(10): 32-39 . ![]() | |
5. | 姬江浩,胥思勤. 污泥生物炭制备及应用研究进展. 科技创新与生产力. 2021(05): 41-46 . ![]() |