Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MOU Zijie, LI Junqi, LI Xiaojing. RESEARCH PROGRESS ON APPLICATION OF GEOSYNTHETICS IN GREEN STORMWATER INFRASTRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 206-212. doi: 10.13205/j.hjgc.202208029
Citation: HU Mengxiang, JIANG Lijian, WANG Lingyun, KANG Jian, LIANG Yun, HAN Wanfei, WANG Desheng, TANG Min. INFLUENCE OF EVAPORATION-CONDENSATION AEROSOL POLYDISPERSITY ON THE PENETRATION MEASUREMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 78-83. doi: 10.13205/j.hjgc.202208010

INFLUENCE OF EVAPORATION-CONDENSATION AEROSOL POLYDISPERSITY ON THE PENETRATION MEASUREMENT

doi: 10.13205/j.hjgc.202208010
  • Received Date: 2021-10-13
  • Publish Date: 2022-11-08
  • To study the impact of evaporation-condensation aerosol polydispersity on the penetration measurement experiment, the penetrations of various filter materials from low to high filtration efficiency were measured at different particle count median diameter and face filtration velocity. The true penetration curves at typical filtration velocity were obtained by corrected calculation, and compared with the test penetration, which was found that all the most penetrating particle sizes were all in the range of 0.1 μm to 0.3 μm. The most penetrating particle size measured in the test had a negative deviation, and the relative error with the corrected value was very small, with a maximum value within 1.5%. The extreme value of the penetration error caused by the polydispersity of the test aerosol appeared at the position of the most easily penetrated particle size, showing a negative deviation. The relative error of the low-efficiency filter material was small, with the minimum value of 2.4%, and the maximum value of the high-efficiency filter material was about 10%. It was concluded that in the range of the most penetrating particle size, the most easily penetrated particle size and penetration measured by evaporation-condensation monodisperse aerosol were valid.
  • [1]
    WHITESIDE M,HERNDON J M,et al.Coal fly ash aerosol:risk factor for lung cancer[J].Journal of Advances in Medicine and Medical Research,2018,25(4):1-10.
    [2]
    高瑞.大气颗粒物及其气溶胶组分促肺癌作用机制研究[D].太原:山西大学,2020.
    [3]
    夏艺.大气细颗粒物(PM2.5)暴露大鼠肺部微结构改变的影像研究[D].上海:中国人民解放军海军军医大学,2021.
    [4]
    MATYS J,GRZECH-LEŚNIAK K. Dental aerosol as a hazard risk for dental workers[J].Materials,2020,13(22):5109.
    [5]
    HAMMER T,GAO H C,PAN Z Y,et al.Relationship between aerosols exposure and lung deposition dose[J].Aerosol and Air Quality Research,2020,20(5):1083-1093.
    [6]
    STADNYTSKYI V,BAX C E,BAX A,et al.The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission[J].Proceedings of the National Academy of Sciences,2020,117(22):11875-11877.
    [7]
    PICH J.Gas Filtration Theory[M].Filtration.Routledge,2017:1-132.
    [8]
    NAZARENKO Y.Air filtration and SARS-CoV-2[J].Epidemiology and Health,2020,42:e2020049.
    [9]
    KANAOKA C.Fine particle filtration technology using fiber as dust collection medium[J].KONA Powder and Particle Journal,2019,36:88-113.
    [10]
    ZHOU Z J,ZHOU B,TSENG C H,et al.Evaluation of characterization and filtration performance of air cleaner materials[J].International Journal of Environmental Science and Technology,2021,18(8):2209-2220.
    [11]
    HWANG S H,LEE B H.Comparison of melt-blown and glass-fiber HEPA asbestos filters based on ISO filter classes,filtration efficiency,power consumption,and face velocity[J].Journal of the Air & Waste Management Association,2021:1-10.
    [12]
    张小鹏,钱晓明,刘璐,等.玻璃纤维过滤材料的研究现状[J].化工新型材料,2021,49(7):225-228.
    [13]
    CHENG X,ZHANG J.Comparison of turbine oil method with other methods[J].20th DOE/NRC NACC Proceedings,1988:1146-1165.
    [14]
    BOSKOVIC L,AGRANOVSKI I E,BRADDOCK R D.Filtration of nanosized particles with different shape on oil coated fibres[J].Journal of Aerosol Science,2007,38(12):1220-1229.
    [15]
    国家标准局.高效空气过滤器性能试验方法效率和阻力:GB 6165[S].北京:中国标准出版社,2008.
    [16]
    冯昕,江锋,张惠,等.高效空气过滤器国标体系主要修订内容解读[J].暖通空调,2020,50(2):39-45.
    [17]
    ILLÉS B,GORDON P.Filtering efficiency measurement of respirators by laser-based particle counting method[J].Measurement,2021,176:109173.
    [18]
    ROMAY-NOVAS F J,PUI D Y H.Generation of monodisperse aerosols in the 0.1-1.0-μm diameter range using a mobility classification-inertial impaction technique[J].Aerosol science and technology,1988,9(2):123-131.
    [19]
    林秉乐.超小 DOS 单分散气溶胶粒子发生器[J].洁净与空调技术,1996(3):22-25.
    [20]
    BINGYUE L,PEIMING F,LIDA X,et al.A HEPA,ULPA filter media DOP tester[J].China Powder Science and Technology,1999,3.
    [21]
    沈大鹏,刘群,史英霞,等.凝聚式单分散气溶胶发生方法研究[J].辐射防护,2010 (5):277-283.
    [22]
    江锋,庄子威,张振中,等.用于 HEPA 滤料效率检测的蒸发冷凝技术[J].清华大学学报 (自然科学版),2015,54(5):629-632.
    [23]
    SINCLAIR D,LA MER V K.Light scattering as a measure of particle size in aerosols.the production of monodisperse aerosols[J].Chemical reviews,1949,44(2):245-267.
    [24]
    JENG C J,KINDZIERSKI W B,SMITH D W.Aerosol generation using a joint vapor-nuclei type generator:factorial design to characterize its performance[J].Journal of Environmental Engineering and Science,2005,4(3):209-219.
    [25]
    AREFIN A M E,MASUD M H,JOARDDER M U H,et al.A monodisperse-aerosol generation system:design,fabrication and performance[J].Particuology,2017,34:118-125.
    [26]
    QIN G X,PAN L L,XU Y N,et al.Design of a mono-disperse aerosol generator for efficiency testing of HEPA filter[J].SN Applied Sciences,2021,3(4):1-8.
    [27]
    门泉福,王跃发,史喜成,等.基本单分散气溶胶透过率测试中真实值的计算[J].环境工程学报,2012,6(3):971-976.
    [28]
    HEIDENREICH S,EBERT F.Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases[J].Chemical Engineering and Processing:Process Intensification,1995,34(3):235-244.
    [29]
    刘润哲,朱诗杰,钟欣,等.细颗粒在蒸汽冷凝相变过程中的长大特性[J].高校化学工程学报,2019,33(2):290-297.
    [30]
    巴伦,维勒克,白志鹏,等.气溶胶测量:原理、技术及应用[M].北京:化学工业出版社,2007.
    [31]
    门泉福,任川齐,康凯,等.高浓度单分散 DOP 气溶胶发生系统及其性能测试[J].
    [32]
    刘志军,王智超.凝聚式单分散气溶胶发生技术的探讨[J].中国粉体技术,2007,13(2):30-33.
    [33]
    余涛,张振中,江锋,等.蒸发冷凝法亚微米气溶胶发生装置的最佳运行参数[J].清华大学学报(自然科学版),2010,50(3):426-429.
    [34]
    KIRSCH A.The theory of aerosol filtration with fibrous filters[J].Fundamentals of Aerosol Science,1978.
    [35]
    BROWN R.Airflow through filters-beyond single-fiber theory[J].Advances in Aerosol Filtration,1998:153-172.
  • Relative Articles

    [1]QIAN Xu, CHEN Pengpeng, XIE Pengcheng, GE Chunling, LUO Wei. AN INTELLIGENT CLASSIFICATION INFRASTRUCTURE SYSTEM FOR COMMUNITY SOLID WASTE: DESIGN AND IMPLEMENTING SCHEME[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 239-246. doi: 10.13205/j.hjgc.202402028
    [2]LI Denghui, HUANG Bangjie, ZHANG Zongyao, LIU Xiaochen, DU Hongwei, SUN Hongwei, FANG Huaiyang, FANG Xiaohang. A CASE STUDY ON URBAN NON-POINT SOURCE POLLUTION CONTROL: THE HUIZHOU CHATING ECOLOGICAL REGULATION POND IN THE SHAHE RIVER BASIN OF THE DONGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 35-42. doi: 10.13205/j.hjgc.202406005
    [3]DU Jiamin, WEI Yuanyuan, DING Chao, ZHU Haochuan, LIU Weijing, TANG Baiyang, YANG Shiyao, FENG Qian. RESEARCH ON LAYOUT OF INTERCEPTION COMBINED SEWER OVERFLOW DETENTION TANKS BASED ON THEIR LIFE CYCLE CARBON EMISSIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 50-60. doi: 10.13205/j.hjgc.202411006
    [4]GAO Yahong, LIN Bingquan, ZHAO Chen, LIU Yuxuan, AN Xinqi, ZHONG Yin, HU Qian, WANG Zhenbei, QIU Bin, QI Fei, SUN Dezhi. THE CHARACTERISTICS OF INITIAL RAINWATER POLLUTION AND INTERCEPTION AND STORAGE IN HILLY TOWNS IN THE YANGTZE RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 191-200. doi: 10.13205/j.hjgc.202409018
    [5]LIU Xiaorui, WANG Zhimin, WANG Yinlong. POLLUTION REDUCTION OF INFLOW RIVERS OF THE TIEGANG RESERVOIR IN BAO’AN DISTRICT, SHENZHEN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 26-32. doi: 10.13205/j.hjgc.202410004
    [6]WANG Jianlong, ZHANG Changhe, XI Guangpeng. A NOVEL VOLUME OPTIMIZATION METHOD FOR DETENTION TANKS FOR FLOODING IMMIGRATION BASED ON MULTI-OBJECTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 166-173. doi: 10.13205/j.hjgc.202306022
    [7]LU Wentao, CHEN Bo, LEI Huo, SHAO Huixing, QIN Yifan. CONSTRUCTION AND RESEARCH ON A SAFE OPERATION MONITORING PLATFORM OF DRAINAGE INFRASTRUCTURE IN CHANGZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 25-33. doi: 10.13205/j.hjgc.202311005
    [8]PENG Zhouyang, JIN Xi, SANG Wenjiao. OPTIMIZATION OF DESIGN OF TERMINAL FLOW INTERCEPTION AND STORAGE FACILITIES OF COMBINED DRAINAGE SYSTEM BASED ON NSGA-Ⅲ ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 143-149. doi: 10.13205/j.hjgc.202208020
    [9]WANG Jian-long, QIN Mei-na, HUANG Tao, TU Nan-nan. SEDIMENTATION CHARACTERISTICS OF PARTICULATE MATTERS IN RUNOFF DETENTION TANK VIA CFD METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 44-50. doi: 10.13205/j.hjgc.202112007
    [10]JIANG Yu-cheng, LI Jun-qi, YAO Hai-bo. SUMMARY OF FINANCIAL INCENTIVE MEASURES FOR RAINWATER HARVESTING IN THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 159-165. doi: 10.13205/j.hjgc.202006026
    [11]XU Chen, ZHAN Jian, HU Jia-jun, WANG Liu-peng, CHEN Yun-hui, XUE Zhen-zhou. RESEARCH PROGRESS ON INFLUENCING FACTORS OF RAINWATER RUNOFF RETENTION AND POLLUTION INTERCEPTION EFFECT OF EXTENSIVE GREEN ROOF[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 76-81. doi: 10.13205/j.hjgc.202009013
    [12]YAN Xiao-wen, LI Jun-qi, GUO Xiao-peng. SELECTION AND DESIGN OF ADAPTIVE PLANTS FOR GREEN STORMWATER INFRASTRUCTURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 170-175,251. doi: 10.13205/j.hjgc.202006028
    [13]LI Jun-qi, OU Jian-xi, LI Xiao-jing. A PLANNING AND DESIGN METHOD OF GREEN STORMWATER INFRASTRUCTURE BASED ON SPONGE EQUIVALENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 96-100. doi: 10.13205/j.hjgc.202004017
    [18]Gao Kewei, Chen Yixin, Li Yao, Wang Modi. COMPARATIVE ANALYSIS OF HYDRAULIC CONDUCTIVITY MEASURMENTS OF LANDFILLED MSW IN CHINA AND ABROAD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 136-139. doi: 10.13205/j.hjgc.201505029
  • Cited by

    Periodical cited type(3)

    1. 徐超,陈铭铭,杨阳,李格烨. 基于生产过程实测的土工合成材料碳排放因子. 重庆交通大学学报(自然科学版). 2025(01): 1-7 .
    2. 常铖炜,董进波,汤燕,马顺博,熊新港,解清杰. 梯度过滤工艺对地表雨水径流净化规律. 排灌机械工程学报. 2024(07): 720-727 .
    3. 刘思艺. 可持续材料在城市规划与设计中的应用. 造纸装备及材料. 2023(10): 100-102 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 85.5 %META: 85.5 %PDF: 5.4 %PDF: 5.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.5 %其他: 17.5 %Hanoi: 3.6 %Hanoi: 3.6 %上海: 0.6 %上海: 0.6 %临汾: 1.2 %临汾: 1.2 %北京: 4.8 %北京: 4.8 %十堰: 0.6 %十堰: 0.6 %南通: 0.6 %南通: 0.6 %台州: 1.2 %台州: 1.2 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 0.6 %天津: 0.6 %宿州: 0.6 %宿州: 0.6 %常德: 1.2 %常德: 1.2 %广州: 1.2 %广州: 1.2 %张家口: 1.8 %张家口: 1.8 %成都: 0.6 %成都: 0.6 %扬州: 1.8 %扬州: 1.8 %无锡: 0.6 %无锡: 0.6 %昆明: 1.2 %昆明: 1.2 %晋城: 1.2 %晋城: 1.2 %朝阳: 0.6 %朝阳: 0.6 %杭州: 3.0 %杭州: 3.0 %武汉: 3.0 %武汉: 3.0 %济源: 1.2 %济源: 1.2 %温州: 1.8 %温州: 1.8 %湖州: 1.8 %湖州: 1.8 %湘潭: 1.8 %湘潭: 1.8 %漯河: 2.4 %漯河: 2.4 %石家庄: 0.6 %石家庄: 0.6 %福州: 1.2 %福州: 1.2 %芒廷维尤: 17.5 %芒廷维尤: 17.5 %苏州: 0.6 %苏州: 0.6 %西宁: 10.2 %西宁: 10.2 %贵阳: 1.2 %贵阳: 1.2 %运城: 4.8 %运城: 4.8 %遵义: 0.6 %遵义: 0.6 %郑州: 0.6 %郑州: 0.6 %重庆: 1.2 %重庆: 1.2 %长沙: 1.8 %长沙: 1.8 %长治: 0.6 %长治: 0.6 %黄冈: 1.8 %黄冈: 1.8 %其他Hanoi上海临汾北京十堰南通台州嘉兴天津宿州常德广州张家口成都扬州无锡昆明晋城朝阳杭州武汉济源温州湖州湘潭漯河石家庄福州芒廷维尤苏州西宁贵阳运城遵义郑州重庆长沙长治黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(2) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return