Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011
Citation: WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011

INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY

doi: 10.13205/j.hjgc.202208011
  • Received Date: 2021-09-09
  • Publish Date: 2022-11-08
  • In order to study the influencing factors of moisture content and permeability of the consolidated body in the process of chemical consolidation treatment of waste slurry, super absorbent polymer (SAP) and cement were selected as the consolidation materials, and indoor consolidation tests were carried out on the waste mud to study different consolidations. The effects of materials, material ratios, and consolidation time on moisture content of the consolidated body were tested on a permeation instrument modified from a medium pressure filter loss instrument, to study the effects of the above factors on permeability. The results showed that SAP over 5% in 24 hours was better in reducing moisture content than cement, and after 168 h, cement with the same ratio was better than SAP. The permeability of the SAP group was better than that of the cement group, and the ratio was increased to 7%. After the consolidation time reached 72 h, the permeability of the SAP group didn’t continue to decrease but increased. When the cement ratio was below 7%, when increasing the ratio to permeability, the effect of sexual blocking became more significant. After analysis, there was a positive correlation between the permeability of the consolidated body and the moisture content, and the moisture content affected the permeability by changing the number of seepage channels. 5% SAP and 7% cement made the waste slurry achieve a better consolidation effect.
  • [1]
    黎强,邹强,杨琳,等.废弃钻井液不落地达标处理技术在塔里木油田的应用[J].环境工程,2014,32(增刊1):82-84.
    [2]
    JADITAGER M,SIVAKUGAN N.Consolidation behavior of fly ash-based geopolymer-stabilized dredged slurry[J].Journal of Waterway Port Coastal & Ocean Engineering,2018,144(4):1-7.
    [3]
    杨子健,刘阳生.水基钻井固体废物处理处置技术研究进展[J].环境工程,2021,39(10):143-149.
    [4]
    LIN J L,LI J S.Reduction and resources treatment of construction waste slurry[J].IOP Conference Series:Earth and Environmental Science,2019,233(5):52-55.
    [5]
    吴思麟,朱伟,闵凡路,等.泥浆真空抽滤泥水分离中堵塞机理及规律性研究[J].岩土工程学报,2017,39(8):1530-1537.
    [6]
    梁止水,杨才千,高海鹰,等.建筑工程废弃泥浆快速泥水分离试验研究[J].东南大学学报(自然科学版),2016,46(2):427-433.
    [7]
    张钦喜,陶韬,王晓杰,等.钻孔灌注桩废弃泥浆处理的试验研究[J].水利学报,2015,46(增刊1):40-45.
    [8]
    詹良通,张斌,郭晓刚,等.废弃泥浆底部真空-上部堆载预压模型试验研究[J].岩土力学,2020,41(10):3245-3254.
    [9]
    田浩,赵会军.废弃油基泥浆处理工艺与研究[J].环境工程,2014,32(增刊1):310-313.
    [10]
    石振明,薛丹璇,彭铭,等.泥水盾构隧道废弃泥浆改性固化及强度特性试验[J].工程地质学报,2018,26(1):103-111.
    [11]
    王光坤,武亚军.工程废浆的絮凝及固结特性试验研究[J].水电能源科学,2017,35(12):116-119.
    [12]
    傅小姝,王江营,张贵金,等.不同pH值下水泥土力学与渗透特性试验研究[J].铁道科学与工程学报,2017,14(8):1639-1646.
    [13]
    VINAI R,OGGERI C,PEILA D.Soil conditioning of sand for EPB applications:a laboratory research[J].Tunnelling and Underground Space Technology,2008,23(3):308-317.
    [14]
    武亚军,牛坤,唐海峰,等.药剂真空预压法处理工程废浆中生石灰的增渗作用[J].岩土力学.2017,38(12):3453-3461.
    [15]
    韦猛,亓金慧,张宁馨,等.吸水树脂用于废弃泥浆处理的试验研究[J].煤田地质与勘探,2019,47(6):207-211.
    [16]
    石振明,薛丹璇,彭铭,等.泥水盾构隧道废弃泥浆改性固化及强度特性试验[J].工程地质学报,2018,26(1):103-111.
    [17]
    龚方泽.福建省高液限土路基化学固化机理与耐久性研究[D].福州:福州大学,2017.
    [18]
    马耀邦.SAP混凝土力学性能试验研究[D].天津:天津大学,2016.
    [19]
    陈亮.建筑桩基工程泥浆处理技术[D].重庆:重庆交通大学,2016.
    [20]
    苏霈洋,贾静.围压与含水率对煤体渗透特性影响研究[J].山西科技,2020,35(6):31-34.
  • Relative Articles

    [1]CHU Yangyang, LI Hui, ZHU Yanping, HAN Xiaomeng, SHU Shihu. A REVIEW OF RESEARCH PROGRESS OF PREDICTION MODELS FOR DISINFECTION BY-PRODUCTS: EMPIRICAL MODELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 38-48. doi: 10.13205/j.hjgc.202407004
    [2]HE Weiqi, CHEN Rong, LU Zhixiang, MA Xu, WU Zhijie. ANOMALY DETECTION OF SMOKE EMISSIONS BASED ON WORKING CONDITION DATA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 79-84. doi: 10.13205/j.hjgc.202401011
    [3]XIE Qi, XIA Fei, YUAN Bo. PREDICTION OF PM2.5 CONCENTRATION IN XI’AN BASED ON CEEMDAN-SE-BiLSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 105-115. doi: 10.13205/j.hjgc.202408013
    [4]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [5]ZHOU Jianguo, WANG Jianyu, WEI Siti. PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021
    [6]FANG Li, HE Lijuan, HAO Run, NIE Lei, WANG Hailin. PRIMARY STUDY ON ENVIRONMENTAL IMPACT AND CONTROL MEASURES OF FUGITIVE COAL DUST DURING RAILWAY TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 123-127,147. doi: 10.13205/j.hjgc.202201018
    [7]DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
    [8]LI Yang, LIU Yong-he, WANG Xi-yue, WANG Hai-lin. SPATIAL-TEMPORAL CHARACTERISTICS OF PM2.5 AND PM10 AND THEIR RELATIONSHIPS WITH METEOROLOGICAL FACTORS IN JIAOZUO, HENAN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 44-53. doi: 10.13205/j.hjgc.202209006
    [9]HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
    [10]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [11]WANG Xue-mei, WANG Feng-wen, CHEN Tao, ZHANG Qing-guo, JIANG Yue-lin. PM2.5 CONCENTRATION PREDICTION AND UNCERTAINTY ANALYSIS BASED ON A COMPOSITE MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 229-235. doi: 10.13205/j.hjgc.202008038
    [12]ZHAO Wen-cheng, WANG Fang. ANALYSIS OF URBAN AIR QUALITY INDEX BASED ON MULTISCALE CROSS TREND SAMPLE ENTROPY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 91-98. doi: 10.13205/j.hjgc.202002013
    [13]WEI Wen-jing, XIE Bing-geng, ZHOU Kai-chun, LI Xiao-qing. RESEARCH ON TEMPORAL AND SPATIAL VARIATIONS OF ATMOSPHERIC PM2.5 AND PM10 AND THE INFLUENCING FACTORS IN SHANDONG, CHINA DURING 2013—2018[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 103-111. doi: 10.13205/j.hjgc.202012018
    [17]Ye Ming Wang Gongzheng Su Guimei Mo Runyang Hu Jing, . PREPARATION AND APPLICATION OF FUNCTIONAL MAGNETIC NANOCOMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 66-71. doi: 10.13205/j.hjgc.201510015
    [18]Zhang Lihua, Wu Jiechun, Bao Yuhai, Xu Ri, Xu Kun. THE ANALYSIS OF POLLUTION LEVEL OF PARTICLES PM10 AND PM2. 5 IN WUHAN AND XI'AN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 73-76. doi: 10.13205/j.hjgc.201503015
  • Cited by

    Periodical cited type(3)

    1. 李恺. 城市管理中空气重污染的影响及应急预案制定研究. 环境科学与管理. 2023(12): 11-14+29 .
    2. 崔爱伟,苗纯萍,何欢,熊在平,胡远满,陈玮. 基于移动观测的城市街道峡谷大气污染物时空分布特征. 生态学杂志. 2022(10): 2035-2042 .
    3. 高琦,郭新成,孟妮娜,王利,丁慧兰. 京津冀气溶胶时空变化特征及潜在来源分析. 科学技术与工程. 2021(30): 13185-13195 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.1 %FULLTEXT: 9.1 %META: 88.0 %META: 88.0 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.7 %其他: 16.7 %其他: 0.2 %其他: 0.2 %China: 0.4 %China: 0.4 %[]: 0.7 %[]: 0.7 %上海: 2.2 %上海: 2.2 %东莞: 0.7 %东莞: 0.7 %临汾: 0.9 %临汾: 0.9 %北京: 3.1 %北京: 3.1 %南京: 0.2 %南京: 0.2 %南昌: 0.7 %南昌: 0.7 %南通: 0.9 %南通: 0.9 %台中: 0.4 %台中: 0.4 %台州: 0.7 %台州: 0.7 %吕梁: 0.2 %吕梁: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大同: 0.2 %大同: 0.2 %天津: 1.6 %天津: 1.6 %太原: 0.2 %太原: 0.2 %宜宾: 0.4 %宜宾: 0.4 %常德: 0.2 %常德: 0.2 %广州: 0.2 %广州: 0.2 %弗吉: 0.2 %弗吉: 0.2 %张家口: 0.4 %张家口: 0.4 %德黑兰: 0.7 %德黑兰: 0.7 %成都: 0.9 %成都: 0.9 %拉贾斯坦邦: 0.2 %拉贾斯坦邦: 0.2 %文山壮族苗族自治州: 0.2 %文山壮族苗族自治州: 0.2 %昆明: 0.9 %昆明: 0.9 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.4 %杭州: 0.4 %武汉: 0.7 %武汉: 0.7 %济源: 0.4 %济源: 0.4 %淮安: 0.2 %淮安: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 1.6 %湖州: 1.6 %漯河: 0.2 %漯河: 0.2 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.4 %秦皇岛: 0.4 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 46.3 %芒廷维尤: 46.3 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.9 %苏州: 0.9 %衡阳: 0.2 %衡阳: 0.2 %衢州: 1.3 %衢州: 1.3 %西宁: 4.5 %西宁: 4.5 %西安: 0.4 %西安: 0.4 %西雅图: 0.7 %西雅图: 0.7 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.3 %运城: 1.3 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.1 %郑州: 1.1 %重庆: 0.7 %重庆: 0.7 %银川: 0.4 %银川: 0.4 %长治: 0.2 %长治: 0.2 %其他其他China[]上海东莞临汾北京南京南昌南通台中台州吕梁嘉兴大同天津太原宜宾常德广州弗吉张家口德黑兰成都拉贾斯坦邦文山壮族苗族自治州昆明晋城朝阳杭州武汉济源淮安温州湖州漯河石家庄秦皇岛绵阳芒廷维尤芝加哥苏州衡阳衢州西宁西安西雅图贵阳运城遵义邯郸郑州重庆银川长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (198) PDF downloads(1) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return