Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Jianke, LIAO Hongqiang, DUAN Siyu, YANG Yelin, GAO Hongyu. CEMENTITIOUS CHARACTERISTICS OF ULTRAFINE POWDER FOR COAL-FIRED CFB ASH AND CFB SLAG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 110-117. doi: 10.13205/j.hjgc.202208015
Citation: WANG Jianke, LIAO Hongqiang, DUAN Siyu, YANG Yelin, GAO Hongyu. CEMENTITIOUS CHARACTERISTICS OF ULTRAFINE POWDER FOR COAL-FIRED CFB ASH AND CFB SLAG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 110-117. doi: 10.13205/j.hjgc.202208015

CEMENTITIOUS CHARACTERISTICS OF ULTRAFINE POWDER FOR COAL-FIRED CFB ASH AND CFB SLAG

doi: 10.13205/j.hjgc.202208015
  • Received Date: 2021-11-27
  • Publish Date: 2022-11-08
  • Aiming at the problem of resource utilization of coal-fired circulating fluidized bed boiler (CFB) ash and slag, the CFB ash and slag were ultra-refined by a supersonic steam mill. The cement-based cementitious properties of CFB ash ultrafine powder and their mixtures were compared and studied, including compressive strength, water requirement of normal consistency, stability and setting time. The results showed that under the premise of meeting the P·F 42.5 strength standard, the incorporation of CFB original ash in cement reached 40%, the CFB ash ultrafine powder was 55%, the CFB slag ultrafine powder was 25%, and the incorporation of CFB ash and slag wltrafine powder reached 40% if the CFB ash and slag were mixed according to 2∶1. The incorporation of CFB slag ultrafine powder significantly increased the water requirement of normal consistency of the cement system. A large dosage (≥70%) would lead to the early setting of the cementitious system, and less dosage (≤55%) would show retarding effect. Although the addition of solid waste superfine powder led to the deterioration of volume stability of the cement system, it still met the requirements of China’s national standard, GB 175—2020 Common Portland Cement (<5 mm).
  • [1]
    李恒,刘伟,梁曼,等.我国粉煤灰综合利用途径及对减排降碳的影响分析[J].居业,2021(11):165-166.
    [2]
    张力,李星吾,张元赏,等.粉煤灰综合利用进展及前景展望[J].建材发展导向,2021,19(24):1-6.
    [3]
    陈志诚,王浙锋,傅雄.燃煤电厂粉煤灰资源化利用的思考[J].绿色环保建材,2021(8):60-61.
    [4]
    徐硕,杨金林,马少健.粉煤灰综合利用研究进展[J].矿产保护与利用,2021,41(3):104-111.
    [5]
    HERATH C,GUNASEKARA C,LAW D W,et al.Performance of high volume fly ash concrete incorporating additives:a systematic literature review[J].Construction and Building Materials,2020,258:120606.
    [6]
    刘仓,金亮,陈航超,等.粉煤灰资源化提取研究进展[J].煤炭工程,2021,53(增刊1):127-133.
    [7]
    张宇娟,张永锋,孙俊民,等.高铝粉煤灰提取氧化铝工艺研究进展[J/OL].现代化工:1-5[2022-01-13

    ].
    [8]
    燕飞,李春林,吕辉.空心微珠增强铝基复合材料的制备工艺及性能研究进展[J].材料导报,2021,35(增刊2):376-380.
    [9]
    田巧艳,亢福仁,张凯煜,等.煤基固废生态化利用研究进展[J].榆林学院学报,2021,31(6):57-62.
    [10]
    褚琳琳,宋媛媛,吕晓昊.粉煤灰制备沸石的合成方法研究及环保应用[J].河北环境工程学院学报,2021,31(5):62-66

    ,81.
    [11]
    高福宁,岳峰,刘耀,等.CFB粉煤灰在路基填料中的工程特性研究[J].山西交通科技,2021(3):19-22.
    [12]
    米美霞,陈玉鹏,武小钢,等.粉煤灰和蚯蚓粪施用对土壤蒸发的影响[J].节水灌溉,2021(11):25-31.
    [13]
    贺敬平,武善元,云明,等.水泥-粉煤灰煤矿含水层复合注浆材料性能研究[J].中国资源综合利用,2021,39(9):4-6

    ,22.
    [14]
    熊路长,万志军,张源,等.超高掺量粉煤灰胶凝材料基本性能研究[J].硅酸盐通报,2019,38(4):1038-1044.
    [15]
    张曼曼,鲁海峰,年宾,等.地面注浆加固顶板高掺量粉煤灰水泥浆液材料性能研究[J].煤矿安全,2020,51(6):60-65.
    [16]
    刘刚,林崇雄,李维洲,等.蒸养条件下大掺量粉煤灰水泥浆体性能研究[J].新型建筑材料,2020,47(8):91-96.
    [17]
    范杰,邹书琴,杨雨霏,等.大掺量粉煤灰型水泥砂浆的力学性能及干缩性能研究[J].混凝土,2020(6):130-133.
    [18]
    刘攀.循环流化床粉煤灰(渣)综合利用研究和规模化生产[J].砖瓦,2019(12):42-46.
    [19]
    段思宇,李溪,廖洪强,等.掺CFB粉煤灰超微粉水泥性能研究[J].混凝土,2020,4(2):94-97

    ,100.
    [20]
    李端乐.掺超细循环流化床粉煤灰水泥的特性研究[D].北京:中国矿业大学(北京),2018.
    [21]
    段思宇.钢渣—粉煤灰—脱硫石膏复合胶凝体系的反应机制及应用研究[D].太原:山西大学,2020.
    [22]
    FENG J J,LIU S H,WANG Z G.Effects of ultrafine fly ash on the properties of high-strength concrete[J].Journal of Thermal Analysis and Calorimetry,2015,121(3).
    [23]
    黄根,王宾,徐宏祥,等.粉煤灰综合利用与提质技术研究进展[J].矿产保护与利用,2019,39(4):32-37.
    [24]
    李广建,杨飞,付海峰,等.蒸汽动能磨制备超细固硫灰及其应用研究[J].化工矿物与加工,2019,48(10):56-60.
    [25]
    董建勋,洪雪莲,王琛.循环硫化床粉煤灰超细化研究[J].河南化工,2021,38(4):17-20.
    [26]
    曾玻.粉煤灰物理特性对水泥浆体力学性能及微观结构的影响[D].成都:西南科技大学,2021.
    [27]
    杨烨霖,廖洪强,段思宇,等.粉磨方式对粉煤灰理化特性的影响[J].中国粉体技术,2022,28(1):52-61.
    [28]
    黄莹,谢友均,刘宝举.粉煤灰掺量和细度对水泥凝结时间的影响[J].水泥,2003(12):4-6.
  • Relative Articles

    [1]LI Sha, WANG Zhaojia, WANG Mingwei, ZHENG Yongchao, ZHAN Jiayu. LONG-TERM LEACHING BEHAVIORS OF HEAVY METALS FROM STEEL SLAG IN CEMENT-BASED CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 136-142. doi: 10.13205/j.hjgc.202303018
    [2]ZHAO Chutong, GUAN Yanyan, ZHANG Ze, WANG Xiaona, GAO Ming, WU Chuanfu, WANG Qunhui. EFFECT OF FLY ASH INCORPORATION ON HYDRATION MECHANISM AND HEAVY METAL SOLIDIFICATION/STABILIZATION EFFECT ON SLAG-BASED BACKFILLFING CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 213-220,189. doi: 10.13205/j.hjgc.202312026
    [3]ZOU Qihong, YU Zhaosheng, WEI Chen, MA Xiaoqian. ASH FUSION CHARACTERISTIC OF FOOD WASTE DIGESTATE AND MUNICIPAL SOLID WASTE DURING CO-COMBUSTION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 69-74,178. doi: 10.13205/j.hjgc.202305010
    [4]ZENG Qian, NI Zhe, CHEN Jun, ZHEN Shengli, LIU Zejun, LIU Jianguo, QI Changqing. ORGANIC WASTE DIGESTATE: A REVIEW OF ITS CHARACTERISTICS AND RESOURCES RECOVERY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 61-70,78. doi: 10.13205/j.hjgc.202212009
    [5]CHANG Xiao-nan, LI Zai-xing, LI Yi-fei, ZHENG Zi-xuan. SSTUDY ON CATALYTIC PYROLYSIS CHARACTERISTICS OF ANTIBIOTIC RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 18-24,30. doi: 10.13205/j.hjgc.202205003
    [6]SHAO Yan, JIANG Mingming, XIONG Jingchao, GUO Huajun, CHEN Kun, LIU Zihao, XU Xiaoming, HU Guofeng. INFLUENCE OF ADMIXTURES ON STRENGTH AND HYDRATION PERFORMANCE OF STEEL SLAG & DESULFURIZATION ASH BASED CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 134-141. doi: 10.13205/j.hjgc.202212018
    [7]LIU Chuanliang. PERFORMANCE OF ATOMIZED SPRAYING SUSPENDED DESULFURIZATION OF FLY ASH IN CFB BOILER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 81-87. doi: DOI:10.13205/j.hjgc.202207012
    [8]LI Chung-yan, ZHANG Xi, SHEN Yu-jun, MENG Hai-bo, WEN Hong-da, ZHENG Sheng-wei, ZHOU Hai-bin, CHENG Hong-sheng. EFFECTS OF TURNING STRATEGY ON AEROBIC FERMENTATION PROPERTY OF PIG BIOGAS RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 130-135. doi: 10.13205/j.hjgc.202101020
    [9]CHEN Yao-jun, LI Lai-shun, LV Zheng-yong, MIN Yu-tao. RESEARCH ON WET DETOXIFICATION TECHNOLOGY OF CHROMITE ORE PROCESSING RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 67-74. doi: 10.13205/j.hjgc.202006011
    [13]Yang Min Wu Peng He Wangyang He Jinglian Li Wei, . RESEARCH ON CHARACTERISTICS IN THE ANAEROBIC STARTUP PROCESS OF HIGH VFA CONCENTRATION POMACE WASTE LIQUID[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 32-36. doi: 10.13205/j.hjgc.201508008
  • Cited by

    Periodical cited type(5)

    1. 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . 本站查看
    2. 尉永鹏,马会强,李爽,李聪,张林,亢琼. 污泥基生物炭的制备及其对萘的吸附性能研究. 化工新型材料. 2023(04): 281-286 .
    3. 江汝清,余广炜,王玉,邢贞娇,汪印. 污泥炭对厌氧发酵沼液的吸附特征. 环境科学与技术. 2022(03): 178-187 .
    4. 蒋玉柱,惠贺龙,刘弘毅,丁广超,卢文义,李松庚. 印染污泥基生物炭吸附处理难降解有机废水. 环境工程. 2022(10): 32-39 . 本站查看
    5. 姬江浩,胥思勤. 污泥生物炭制备及应用研究进展. 科技创新与生产力. 2021(05): 41-46 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.0 %FULLTEXT: 14.0 %META: 84.3 %META: 84.3 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.7 %其他: 12.7 %东莞: 1.3 %东莞: 1.3 %临汾: 0.4 %临汾: 0.4 %保定: 0.4 %保定: 0.4 %北京: 2.5 %北京: 2.5 %南京: 1.7 %南京: 1.7 %合肥: 0.8 %合肥: 0.8 %嘉兴: 0.8 %嘉兴: 0.8 %天津: 1.3 %天津: 1.3 %宣城: 0.4 %宣城: 0.4 %宿州: 0.4 %宿州: 0.4 %常德: 0.8 %常德: 0.8 %广州: 0.8 %广州: 0.8 %张家口: 0.8 %张家口: 0.8 %惠州: 0.8 %惠州: 0.8 %成都: 0.4 %成都: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.8 %晋城: 0.8 %朔州: 0.4 %朔州: 0.4 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.8 %杭州: 0.8 %榆林: 0.4 %榆林: 0.4 %武汉: 2.5 %武汉: 2.5 %沈阳: 0.4 %沈阳: 0.4 %沧州: 0.4 %沧州: 0.4 %深圳: 0.4 %深圳: 0.4 %漯河: 2.1 %漯河: 2.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.4 %福州: 0.4 %芒廷维尤: 36.4 %芒廷维尤: 36.4 %芝加哥: 1.7 %芝加哥: 1.7 %衡水: 0.4 %衡水: 0.4 %西宁: 14.8 %西宁: 14.8 %西安: 0.4 %西安: 0.4 %贵阳: 0.8 %贵阳: 0.8 %运城: 3.8 %运城: 3.8 %遵义: 0.8 %遵义: 0.8 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.3 %郑州: 1.3 %重庆: 1.3 %重庆: 1.3 %长沙: 0.4 %长沙: 0.4 %鞍山: 0.4 %鞍山: 0.4 %其他东莞临汾保定北京南京合肥嘉兴天津宣城宿州常德广州张家口惠州成都昆明晋城朔州朝阳杭州榆林武汉沈阳沧州深圳漯河石家庄福州芒廷维尤芝加哥衡水西宁西安贵阳运城遵义邯郸郑州重庆长沙鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (198) PDF downloads(4) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return