Citation: | XIAO Kai, ZHANG Xiao-wei, HAO Zhi-fei, ZHANG Yong-feng, SUN Jun-min. ANALYSIS OF OZONE FORMATION POTENTIAL AND SECONDARY ORGANIC AEROSOL FORMATION POTENTIAL OF VOCs IN A COKING PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 19-25,43. doi: 10.13205/j.hjgc.202209003 |
[1] |
GAO Y Q,LI M,WAN X,et al.Important contributions of alkenes and aromatics to VOCs emissions,chemistry and secondary pollutants formation at an industrial site of central eastern China[J].Atmospheric Environment,2021,244:117927.
|
[2] |
CHEN S C,HUANG Y Y,CHEN M,et al.Research progress on the monitoring of precursor of atmospheric ozone-volatile organic compounds[J].Meteorological and Environmental Research,2020,11(2):29-36.
|
[3] |
XIONG Y,ZHOU J B,XING Z Y,et al.Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential[J].Environmental Research,2020,191:110217.
|
[4] |
张宇晴.中国不同区域大气二次有机气溶胶的观测研究[D].广州:中国科学院大学(广州地球化学研究所),2020.
|
[5] |
胡江亮,赵永,王建成,等.焦化行业VOCs排放特征与控制技术研究进展[J].洁净煤技术,2019,25(6):24-31.
|
[6] |
LI J,ZHOU Y,SIMAYI M,et al.Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China[J].Journal of Cleaner Production,2019,214:224-235.
|
[7] |
REN X,WEN Y P,HE Q S,et al.Higher contribution of coking sources to ozone formation potential from volatile organic compounds in summer in Taiyuan,China[J].Atmospheric Pollution Research,2021,12(6):101083.
|
[8] |
张莹,邓建国,王刚,等.典型钢铁焦化厂可凝结颗粒物排放特征[J].环境工程,2020,38(9):154-158
,125.
|
[9] |
付加鹏,金春江,程星星,等.重点行业VOCs排放特征统计分析[J].环境工程,2020,38(6):188-194
,125.
|
[10] |
ZHANG J F,WEI Y J,FANG Z F,et al.Ozone pollution:a major health hazard worldwide[J].Frontiers in Immunology,2019,10:2518.
|
[11] |
VINOD K,VINAYAK S.Season-wise analyses of VOCs,hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year[J].Chemosphere,2021,283:131184.
|
[12] |
刘文文,方莉,郭秀锐,等.京津冀地区典型印刷企业VOCs排放特征及臭氧生成潜势分析[J].环境科学,2019,40(9):3942-3948.
|
[13] |
GAO M P,TENG W,DU Z X,et al.Source profiles and emission factors of VOCs from solvent-based architectural coatings and their contributions to ozone and secondary organic aerosol formation in China[J].Chemosphere,2021,275:129815.
|
[14] |
WANG H L,HAO R,FANG L,et al.Study on emissions of volatile organic compounds from a typical coking chemical plant in China[J].Science of the Total Environment,2021,752:141927.
|
[15] |
ZHANG X M,WANG D,LIU Y,et al.Characteristics and ozone formation potential of volatile organic compounds in emissions from a typical Chinese coking plant[J].Journal of Environmental Sciences,2020,95(9):183-189.
|
[16] |
刘利军,谢莹,韩强,等.山西省典型炼焦企业化产工段挥发性有机物排放特征及臭氧生成潜势[J].环境污染与防治,2019,41(11):1278-1285.
|
[17] |
环境保护部,国家质量检验检疫总局.炼焦化学工业污染物排放标准:GB 16171—2012[S]北京:中国环境科学出版社,2012.
|
[18] |
环境保护部.环境空气挥发性有机物的测定罐采样/气相色谱-质谱法:HJ 759—2015[S].北京:中国环境科学出版社,2015.
|
[19] |
ATKINSON R,AREY J.Atmospheric degradation of volatile organic compounds[J].Chem Inform,2004,35(10):4605-4638.
|
[20] |
CARTER W P.Development of the SAPRC-07 chemical mechanism[J].Atmospheric Environment,2010,44(10):5324-5335.
|
[21] |
CARTER W P.Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications [EB/OL].http://www.cert.ucr.edu/-carter/SAPRC/MIR10.pdf,2010-01-28.
|
[22] |
GROSJEAN D.In situ organic aerosol formation during a smog episode:estimated production and chemical functionality[J].Atmospheric Environment.Part A.General Topics,1992,26(6):953-963.
|
[23] |
GROSJEAN D,SEINFELD J H.Parameterization of the formation potential of secondary organic aerosols[J].Atmospheric Environment (1967),1989,23(8):1733-1747.
|
[24] |
李颖慧,李如梅,胡冬梅,等.太原市不同功能区环境空气中挥发性有机物特征与来源解析[J].环境化学,2020,39(4):920-930.
|
[25] |
YAN Y L,PENG L,LI R,et al.Concentration,ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area:a study in Shuozhou,China[J].Environmental Pollution,2017,223:295-304.
|
[26] |
高志凤,张晓红,赵文娟,等.典型焦化厂大气挥发性有机物排放表征分析[J].环境科学研究,2019,32(9):1540-1545.
|
[27] |
王学臣,田亮,崔建升,等.焦化工艺厂界无组织VOCs排放特性分析[J].煤炭与化工,2019,42(12):139-143
,150.
|
[28] |
郭鹏,仝纪龙,刘永乐,等.机械化炼焦VOCs排放源成分谱分析[J].环境科学与技术,2020,43(5):103-114.
|
[29] |
贾记红,黄成,陈长虹,等.炼焦过程挥发性有机物排放特征及其大气化学反应活性[J].环境科学学报,2009,29(5):905-912.
|
[30] |
武蕾丹,王秀艳,杨文,等.某工业园区VOCs臭氧生成潜势及优控物种[J].环境科学,2018,39(2):511-516.
|
1. | 赵大洲,武宇杰,叶成秀,付依玮,邵怡菲,任泽宇. 生物质吸附剂去除重金属离子的研究进展. 皮革与化工. 2025(01): 17-21 . ![]() | |
2. | 郑凯远,陈红,绳俊,蔡冬清,薛罡,曾可佳,于鑫,叶沁辉. 污水处理厂碳排放核算方法的标准研究与修正建议. 东华大学学报(自然科学版). 2024(01): 134-144 . ![]() | |
3. | 刘小明. 电炉炼钢中CO_2排放量监测及控制研究. 山西冶金. 2024(02): 94-96 . ![]() | |
4. | 涂倩倩,沈鹏飞,刘鸣燕,张梓璇,余波,杨凯. 城镇污水处理厂碳排放核算方法及特征. 净水技术. 2024(06): 52-62 . ![]() | |
5. | 武成辉,周婧,马锦钰,霍冠峰. 非二氧化碳温室气体排放量化方法研究进展. 广东化工. 2024(20): 103-106 . ![]() | |
6. | 宣干,唐柏杨,李雨婷,张熙彤,刘伟京,操家顺,罗景阳,冯骞. 城镇污水收集系统直接碳排放的监测方法研究进展. 环境工程. 2024(11): 13-21 . ![]() | |
7. | 娄明月,刘广兵,刘伟京,孟溪,施梦琦,郭明辰. 基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究. 环境工程. 2024(11): 61-71 . ![]() | |
8. | 唐柏杨,宣干,杨诗瑶,刘伟京,薛朝霞,操家顺,罗景阳,冯骞. 重新审视化粪池的温室效应:回顾与展望. 环境工程. 2023(07): 14-21 . ![]() | |
9. | 姚怡帆,荆玉姝,王丽艳,刘长青. 基于集成模型的污水处理厂出水总氮预测方法. 工业水处理. 2023(09): 187-194 . ![]() | |
10. | 佟素娟,薛同来. 基于PSO-ACO算法的再生水厂出水总磷预测模型研究. 现代盐化工. 2023(04): 35-37 . ![]() | |
11. | 欧阳伊雯,庞蘅洺,叶红丽,庞惠月,王照晴,高小峰,陆嘉麒. 重庆市城镇污水处理系统的碳排放特征及减污降碳措施建议. 环境工程学报. 2023(09): 2841-2847 . ![]() | |
12. | 张芳. 基于水质+水位检测的城镇排水管网排查重点研究. 工程技术研究. 2022(16): 148-150 . ![]() | |
13. | 孙锐,陈菊香. 基于AHP-FCE模型的污水处理厂运营管理综合评价与优化——以克拉玛依市A污水处理厂为例. 工程技术研究. 2022(18): 201-204+208 . ![]() |