Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
Citation: XIAO Kai, ZHANG Xiao-wei, HAO Zhi-fei, ZHANG Yong-feng, SUN Jun-min. ANALYSIS OF OZONE FORMATION POTENTIAL AND SECONDARY ORGANIC AEROSOL FORMATION POTENTIAL OF VOCs IN A COKING PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 19-25,43. doi: 10.13205/j.hjgc.202209003

ANALYSIS OF OZONE FORMATION POTENTIAL AND SECONDARY ORGANIC AEROSOL FORMATION POTENTIAL OF VOCs IN A COKING PLANT

doi: 10.13205/j.hjgc.202209003
  • Received Date: 2021-10-25
    Available Online: 2022-11-09
  • Due to the special process of the coking plant, the emission problems of sulfur dioxide, nitrogen oxides, particulate matter and VOCs are more prominent. Therefore, the emission characteristics of VOCs in the ambient air at the boundary of the coking plant were analyzed, the ozone formation potential of VOCs was evaluated according to the maximum incremental reaction activity method(MIR) and propylene-equivalent concentration method(PEC), and the secondary organic aerosol formation potential of VOCs was evaluated, according to the fractional aerosol coefficients method(FAC). The results showed that: 1) a total of 17 VOCs including aromatic hydrocarbons, halogenated hydrocarbons, olefins, sulfides and ketones were analyzed at five points in the upwind and downwind direction of the factory boundary. 2) There were significant differences in VOCs detected at the plant boundary in different regions, and the total mass concentration was 28.2~167.9 μg/m3, in which aromatic hydrocarbons accounted for the largest proportion in TVOCs at each point, reaching 51.01%~84.63%. 3) The OFP at the boundary of the cold drum of desulfurization and salt extraction was the largest, with a theoretical value of 335.51 μg/m3, and the OFP at the boundary of office and living area was the smallest, with a theoretical value of 47.06 μg/m3. The contribution rate of aromatic hydrocarbons to OFP was 27.21%~62.37%, that of olefins was 39.17%~61.84%, and that of halogenated hydrocarbons was 2.08%~14.56%. The change trend of OFP estimated by PEC method was consistent with that of MIR method, and the propylene-equivalent concentration range was 3.11~31.89 μg/m3; the contribution rates of propylene-equivalent concentration of aromatic hydrocarbons at each point were 37.10%, 51.46%, 66.79%, 58.80% and 22.74%, respectively. 4) The formation potential of SOA at each point was 0.452, 0.938, 2.517, 4.055, 0.495 μg/m3, respectively; aromatic hydrocarbons contributed the most to the formation potential of SOA. Substances with high mass concentration and reaction activity, such as propylene, toluene, xylene and vinyl chloride, were the VOCs components that need priority control and could be used as markers of VOCs in the ambient air of coking plants.
  • [1]
    GAO Y Q,LI M,WAN X,et al.Important contributions of alkenes and aromatics to VOCs emissions,chemistry and secondary pollutants formation at an industrial site of central eastern China[J].Atmospheric Environment,2021,244:117927.
    [2]
    CHEN S C,HUANG Y Y,CHEN M,et al.Research progress on the monitoring of precursor of atmospheric ozone-volatile organic compounds[J].Meteorological and Environmental Research,2020,11(2):29-36.
    [3]
    XIONG Y,ZHOU J B,XING Z Y,et al.Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential[J].Environmental Research,2020,191:110217.
    [4]
    张宇晴.中国不同区域大气二次有机气溶胶的观测研究[D].广州:中国科学院大学(广州地球化学研究所),2020.
    [5]
    胡江亮,赵永,王建成,等.焦化行业VOCs排放特征与控制技术研究进展[J].洁净煤技术,2019,25(6):24-31.
    [6]
    LI J,ZHOU Y,SIMAYI M,et al.Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China[J].Journal of Cleaner Production,2019,214:224-235.
    [7]
    REN X,WEN Y P,HE Q S,et al.Higher contribution of coking sources to ozone formation potential from volatile organic compounds in summer in Taiyuan,China[J].Atmospheric Pollution Research,2021,12(6):101083.
    [8]
    张莹,邓建国,王刚,等.典型钢铁焦化厂可凝结颗粒物排放特征[J].环境工程,2020,38(9):154-158

    ,125.
    [9]
    付加鹏,金春江,程星星,等.重点行业VOCs排放特征统计分析[J].环境工程,2020,38(6):188-194

    ,125.
    [10]
    ZHANG J F,WEI Y J,FANG Z F,et al.Ozone pollution:a major health hazard worldwide[J].Frontiers in Immunology,2019,10:2518.
    [11]
    VINOD K,VINAYAK S.Season-wise analyses of VOCs,hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year[J].Chemosphere,2021,283:131184.
    [12]
    刘文文,方莉,郭秀锐,等.京津冀地区典型印刷企业VOCs排放特征及臭氧生成潜势分析[J].环境科学,2019,40(9):3942-3948.
    [13]
    GAO M P,TENG W,DU Z X,et al.Source profiles and emission factors of VOCs from solvent-based architectural coatings and their contributions to ozone and secondary organic aerosol formation in China[J].Chemosphere,2021,275:129815.
    [14]
    WANG H L,HAO R,FANG L,et al.Study on emissions of volatile organic compounds from a typical coking chemical plant in China[J].Science of the Total Environment,2021,752:141927.
    [15]
    ZHANG X M,WANG D,LIU Y,et al.Characteristics and ozone formation potential of volatile organic compounds in emissions from a typical Chinese coking plant[J].Journal of Environmental Sciences,2020,95(9):183-189.
    [16]
    刘利军,谢莹,韩强,等.山西省典型炼焦企业化产工段挥发性有机物排放特征及臭氧生成潜势[J].环境污染与防治,2019,41(11):1278-1285.
    [17]
    环境保护部,国家质量检验检疫总局.炼焦化学工业污染物排放标准:GB 16171—2012[S]北京:中国环境科学出版社,2012.
    [18]
    环境保护部.环境空气挥发性有机物的测定罐采样/气相色谱-质谱法:HJ 759—2015[S].北京:中国环境科学出版社,2015.
    [19]
    ATKINSON R,AREY J.Atmospheric degradation of volatile organic compounds[J].Chem Inform,2004,35(10):4605-4638.
    [20]
    CARTER W P.Development of the SAPRC-07 chemical mechanism[J].Atmospheric Environment,2010,44(10):5324-5335.
    [21]
    CARTER W P.Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications [EB/OL].http://www.cert.ucr.edu/-carter/SAPRC/MIR10.pdf,2010-01-28.
    [22]
    GROSJEAN D.In situ organic aerosol formation during a smog episode:estimated production and chemical functionality[J].Atmospheric Environment.Part A.General Topics,1992,26(6):953-963.
    [23]
    GROSJEAN D,SEINFELD J H.Parameterization of the formation potential of secondary organic aerosols[J].Atmospheric Environment (1967),1989,23(8):1733-1747.
    [24]
    李颖慧,李如梅,胡冬梅,等.太原市不同功能区环境空气中挥发性有机物特征与来源解析[J].环境化学,2020,39(4):920-930.
    [25]
    YAN Y L,PENG L,LI R,et al.Concentration,ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area:a study in Shuozhou,China[J].Environmental Pollution,2017,223:295-304.
    [26]
    高志凤,张晓红,赵文娟,等.典型焦化厂大气挥发性有机物排放表征分析[J].环境科学研究,2019,32(9):1540-1545.
    [27]
    王学臣,田亮,崔建升,等.焦化工艺厂界无组织VOCs排放特性分析[J].煤炭与化工,2019,42(12):139-143

    ,150.
    [28]
    郭鹏,仝纪龙,刘永乐,等.机械化炼焦VOCs排放源成分谱分析[J].环境科学与技术,2020,43(5):103-114.
    [29]
    贾记红,黄成,陈长虹,等.炼焦过程挥发性有机物排放特征及其大气化学反应活性[J].环境科学学报,2009,29(5):905-912.
    [30]
    武蕾丹,王秀艳,杨文,等.某工业园区VOCs臭氧生成潜势及优控物种[J].环境科学,2018,39(2):511-516.
  • Relative Articles

    [1]GU Yonggang, YU Lei, ZHANG Shuhan, MENG Qingyi. EVALUATION OF ENTROPY INCREASE INHIBITION EFFECT OF TREATMENT OF INFERIOR V-CLASS WATER BODIES IN TYPICAL RURAL RIVER COURSES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 128-134. doi: 10.13205/j.hjgc.202402015
    [2]WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016
    [5]LI Jingnan, WANG Qunhui, LIANG Baorui, WANG Wanqing, LIU Junjie. EFFECTS OF GARDEN WASTE ON EMISSION REDUCTION AND MICROBIAL COMMUNITY IN COASTAL SALINE SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 95-101. doi: 10.13205/j.hjgc.202401013
    [6]YU Jie, ZHANG Yong, LI Qingyao. DECOUPLING EFFECT AND DRIVING MECHANISM OF CARBON EMISSION REDUCTION IN MANUFACTURING INDUSTRY: A TWO-DIMENSIONAL ANALYSIS FRAMEWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 150-162. doi: 10.13205/j.hjgc.202310019
    [7]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [8]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [9]WANG Zhiqi, LI Jianguo, PENG Binbin, XIANG Wanli. DRIVING FACTORS AND DECOUPLING EFFECT ANALYSIS OF TRANSPORTATION CARBON EMISSIONS IN WESTERN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 213-222. doi: 10.13205/j.hjgc.202310025
    [10]MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
    [11]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [12]LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024
    [13]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [14]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [15]SUN Yao, LI Xiaojing, LI Junqi, WANG Wenliang, XUE Chonghua, WANG Jianlong, WANG Wenhai. DISCUSSION ON EXISTING PROBLEMS AND COUNTERMEASURES IN SPONGE CITY MONITORING AND EVALUATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 182-187. doi: 10.13205/j.hjgc.202204026
    [16]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [17]ZHANG Xing, QIAN Zhen-qing, ZHANG De-feng, ZHU Tao, YUAN Qian-cheng, YE Ze-fu. RESEARCH PROGRESS OF COOKING FUME EMISSION CHARACTERISTICS AND PURIFICATION TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 37-41,20. doi: 10.13205/j.hjgc.202001005
    [18]YIN Ding-kun, CHEN Zheng-xia, YANG Meng-qi, JIA Hai-feng, XU Ke, WANG Teng-xu. EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 151-157. doi: 10.13205/j.hjgc.202004027
    [19]ZHANG Li, XIE Zi-xuan, CAO Li-bin, WU Qiong, CAI Bo-feng. DISCUSSION ON EVALUATION METHOD ON CARBON DIOXIDE EMISSIONS PEAKING FOR CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 1-5,43. doi: 10.13205/j.hjgc.202011001
    [20]LI Han, WANG Jian-long, FENG Cui-min, CAI Zhi-wen, HE Cun-gang, LIU Yan. MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 145-150. doi: 10.13205/j.hjgc.202004026
  • Cited by

    Periodical cited type(13)

    1. 赵大洲,武宇杰,叶成秀,付依玮,邵怡菲,任泽宇. 生物质吸附剂去除重金属离子的研究进展. 皮革与化工. 2025(01): 17-21 .
    2. 郑凯远,陈红,绳俊,蔡冬清,薛罡,曾可佳,于鑫,叶沁辉. 污水处理厂碳排放核算方法的标准研究与修正建议. 东华大学学报(自然科学版). 2024(01): 134-144 .
    3. 刘小明. 电炉炼钢中CO_2排放量监测及控制研究. 山西冶金. 2024(02): 94-96 .
    4. 涂倩倩,沈鹏飞,刘鸣燕,张梓璇,余波,杨凯. 城镇污水处理厂碳排放核算方法及特征. 净水技术. 2024(06): 52-62 .
    5. 武成辉,周婧,马锦钰,霍冠峰. 非二氧化碳温室气体排放量化方法研究进展. 广东化工. 2024(20): 103-106 .
    6. 宣干,唐柏杨,李雨婷,张熙彤,刘伟京,操家顺,罗景阳,冯骞. 城镇污水收集系统直接碳排放的监测方法研究进展. 环境工程. 2024(11): 13-21 . 本站查看
    7. 娄明月,刘广兵,刘伟京,孟溪,施梦琦,郭明辰. 基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究. 环境工程. 2024(11): 61-71 . 本站查看
    8. 唐柏杨,宣干,杨诗瑶,刘伟京,薛朝霞,操家顺,罗景阳,冯骞. 重新审视化粪池的温室效应:回顾与展望. 环境工程. 2023(07): 14-21 . 本站查看
    9. 姚怡帆,荆玉姝,王丽艳,刘长青. 基于集成模型的污水处理厂出水总氮预测方法. 工业水处理. 2023(09): 187-194 .
    10. 佟素娟,薛同来. 基于PSO-ACO算法的再生水厂出水总磷预测模型研究. 现代盐化工. 2023(04): 35-37 .
    11. 欧阳伊雯,庞蘅洺,叶红丽,庞惠月,王照晴,高小峰,陆嘉麒. 重庆市城镇污水处理系统的碳排放特征及减污降碳措施建议. 环境工程学报. 2023(09): 2841-2847 .
    12. 张芳. 基于水质+水位检测的城镇排水管网排查重点研究. 工程技术研究. 2022(16): 148-150 .
    13. 孙锐,陈菊香. 基于AHP-FCE模型的污水处理厂运营管理综合评价与优化——以克拉玛依市A污水处理厂为例. 工程技术研究. 2022(18): 201-204+208 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.4 %FULLTEXT: 17.4 %META: 78.7 %META: 78.7 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.8 %其他: 0.8 %Central District: 0.4 %Central District: 0.4 %Perth Amboy: 1.2 %Perth Amboy: 1.2 %[]: 0.2 %[]: 0.2 %上海: 4.8 %上海: 4.8 %东莞: 1.2 %东莞: 1.2 %临汾: 0.2 %临汾: 0.2 %乌兰察布: 0.2 %乌兰察布: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊春: 0.2 %伊春: 0.2 %保定: 0.4 %保定: 0.4 %六安: 0.2 %六安: 0.2 %北京: 6.0 %北京: 6.0 %南京: 1.6 %南京: 1.6 %南昌: 0.2 %南昌: 0.2 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %四平: 0.4 %四平: 0.4 %天津: 1.4 %天津: 1.4 %宁波: 0.4 %宁波: 0.4 %宣城: 1.0 %宣城: 1.0 %宿州: 0.4 %宿州: 0.4 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.2 %广州: 1.2 %庆阳: 0.2 %庆阳: 0.2 %张家口: 1.4 %张家口: 1.4 %成都: 1.7 %成都: 1.7 %扬州: 0.4 %扬州: 0.4 %昆明: 1.4 %昆明: 1.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.8 %杭州: 0.8 %松原: 0.6 %松原: 0.6 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.6 %武汉: 0.6 %泰安: 0.2 %泰安: 0.2 %济南: 0.4 %济南: 0.4 %济源: 0.2 %济源: 0.2 %深圳: 2.3 %深圳: 2.3 %温州: 0.4 %温州: 0.4 %湖州: 0.6 %湖州: 0.6 %漯河: 0.6 %漯河: 0.6 %濮阳: 0.2 %濮阳: 0.2 %白银: 0.2 %白银: 0.2 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.6 %福州: 0.6 %芒廷维尤: 28.5 %芒廷维尤: 28.5 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.4 %苏州: 0.4 %西宁: 12.0 %西宁: 12.0 %西安: 0.2 %西安: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %郑州: 0.4 %郑州: 0.4 %长春: 0.2 %长春: 0.2 %长沙: 1.2 %长沙: 1.2 %青岛: 0.2 %青岛: 0.2 %香港: 0.6 %香港: 0.6 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他Central DistrictPerth Amboy[]上海东莞临汾乌兰察布乌鲁木齐伊春保定六安北京南京南昌合肥哈尔滨四平天津宁波宣城宿州常州常德广州庆阳张家口成都扬州昆明晋城朝阳杭州松原格兰特县武汉泰安济南济源深圳温州湖州漯河濮阳白银石家庄福州芒廷维尤芝加哥苏州西宁西安贵阳运城遵义郑州长春长沙青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (513) PDF downloads(39) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return