Citation: | LEI Ruo-yuan, LIU Yu, YU Wan-ning, MOU Jing-qiu, GAI Xin-lei. KINETICS OF ATMOSPHERIC AQUEOUS-PHASE OXIDATION OF REPRESENTATIVE PHENOLIC COMPOUNDS EMITTED FROM BIOMASS BURNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 54-62,172. doi: 10.13205/j.hjgc.202209007 |
[1] |
ZHAO Y,HENNIGAN C J,MAY A A,et al.Intermediate-volatility organic compounds:a large source of secondary organic aerosol[J].Environmental Science & Technology,2014,48(23):13743-13750.
|
[2] |
ERVENS B,TURPIN B J,WEBER R J.Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA):a review of laboratory,field and model studies[J].Atmospheric Chemistry and Physics,2011,11(21):11069-11102.
|
[3] |
YU L,SMITH J,LASKIN A,et al.Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical[J].Atmospheric Chemistry and Physics,2014,14(24):13801-13816.
|
[4] |
YE Z L,QU Z X,MA S S,et al.A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol[J].Science of the Total Environment,2019,685(OCT.1):976-985.
|
[5] |
SMITH J D,KINNEY H,ANASTASIO C.Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol[J].Physical Chemistry Chemical Physics,2015,17(15):10227-10237.
|
[6] |
YE Z L,ZHUANG Y,CHEN Y,et al.Aqueous-phase oxidation of three phenolic compounds by hydroxyl radical:insight into secondary organic aerosol formation yields,mechanisms,products and optical properties[J].Atmospheric Environment,2020,223:117240.
|
[7] |
LIU Y,LU J C,CHEN Y F,et al.Aqueous-phase production of secondary organic aerosols from oxidation of dibenzothiophene (DBT)[J].Atmosphere,2020,11(2):151.
|
[8] |
ALVES C A,VICENTE A,MONTEIRO C,et al.Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal[J].Science of the Total Environment,2011,409(8):1466-1475.
|
[9] |
HATCH L E,LUO W,PANKOW J F,et al.Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography-time-of-flight mass spectrometry[J].Atmospheric Chemistry and Physics,2015,15(4):1865-1899.
|
[10] |
ROMONOSKY D E,LASKIN A,LASKIN J,et al.High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols[J].The Journal of Physical Chemistry A,2015,119(11):2594-2606.
|
[11] |
LI G H,ZHANG Q Q,ZHUANG W H,et al.Divergent synthesis of oxacyclophenylpropanoids from biomass-derived eugenol[J].Tetrahedron Letters,2019,60(22):1501-1504.
|
[12] |
SCHAUER J J,KLEEMAN M J,CASS G R,et al.Measurement of emissions from air pollution sources.3.C1-C29 organic compounds from fireplace combustion of wood[J].Environmental Science & Technology,2001,35(9):1716-1728.
|
[13] |
ZHANG H X,YANG B,WANG Y F,et al.Gas-phase reactions of methoxyphenols with NO3 radicals:kinetics,products,and mechanisms[J].The Journal of Physical Chemistry A,2016,120(8):1213-1221.
|
[14] |
BEJAN I,SCHÜRMANN A,BARNES I,et al.Kinetics of the gas-phase reactions of OH radicals with a series of trimethylphenols[J].International Journal of Chemical Kinetics,2012,44(2):117-124.
|
[15] |
HENNIGAN C J,BERGIN M H,DIBB J E,et al.Enhanced secondary organic aerosol formation due to water uptake by fine particles[J].Geophysical Research Letters,2008,35(18):L18801.
|
[16] |
CHEN H,GE X L,YE Z L.Aqueous-phase secondary organic aerosol formation via reactions with organic triplet excited states:a short review[J].Current Pollution Reports,2018,4(1):8-12.
|
[17] |
CHEN Y T,LI N W,LI X D,et al.Secondary organic aerosol formation from 3C*-initiated oxidation of 4-ethylguaiacol in atmospheric aqueous-phase[J].Science of the Total Environment,2020,723:137953.
|
[18] |
HENNIGAN C J,BERGIN M H,RUSSELL A G,et al.Gas/particle partitioning of water-soluble organic aerosol in Atlanta[J].Atmospheric Chemistry and Physics,2009,9(11):3613-3628.
|
[19] |
ANASTASIO C,FAUST B C,ALLEN J M.Aqueous phase photochemical formation of hydrogen peroxide in authentic cloud waters[J].Journal of Geophysical Research,1994,99:8231-8248.
|
[20] |
HERRMANN H,TILGNER A,BARZAGHI P,et al.Towards a more detailed description of tropospheric aqueous phase organic chemistry:CAPRAM 3.0[J].Atmospheric Environment,2005,39(23/24):4351-4363.
|
[21] |
LERICHE M,VOISIN D,CHAUMERLIAC N,et al.A model for tropospheric multiphase chemistry:application to one cloudy event during the CIME experiment[J].Atmospheric Environment,2000,34(29/30):5015-5036.
|
[22] |
TILGNER A,HERRMANN H.Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM[J].Atmospheric Environment,2010,44(40):5415-5422.
|
[23] |
DEGUILLAUME L,LERICHE M,MONOD A,et al.The role of transition metal ions on HOx radicals in clouds:a numerical evaluation of its impact on multiphase chemistry[J].Atmospheric Chemistry & Physics,2004,4(1):95-110.
|
[24] |
RICHARDS-HENDERSON N K,HANSEL A K,VALSARAJ K T,et al.Aqueous oxidation of green leaf volatiles by hydroxyl radical as a source of SOA:kinetics and SOA yields[J].Atmospheric Environment,2014,95:105-112.
|
[25] |
WITKOWSKI B,GIERCZAK T.cis-Pinonic acid oxidation by hydroxyl radicals in the aqueous phase under acidic and basic conditions:kinetics and mechanism[J].Environmental Science & Technology,2017,51(17):9765-9773.
|
[26] |
CHU L,ANASTASIO C.Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide[J].Journal of Physical Chemistry A,2005,109(28):6264-6271.
|
[27] |
ANASTASIO C,MCGREGOR K G.Chemistry of fog waters in California’s Central Valley:1.In situ photoformation of hydroxyl radical and singlet molecular oxygen[J].Atmospheric Environment,2001,35(6):1079-1089.
|
[28] |
YU L,SMITH J,LASKIN A,et al.Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical[J].Atmospheric Chemistry and Physics,2014,14(24):13801-13816.
|
[29] |
ANASTASIO C,FAUST B C,ALLEN J M.Aqueous phase photochemical formation of hydrogen peroxide in authentic cloud waters[J].Journal of Geophysical Research Atmospheres,1994,99(D4):8231-8248.
|
[30] |
SCHONE L,SCHINDELKA J,SZEREMETA E,et al.Atmospheric aqueous phase radical chemistry of the isoprene oxidation products methacrolein,methyl vinyl ketone,methacrylic acid and acrylic acid--kinetics and product studies[J].Physical Chemistry Chemical Physics:PCCP,2014,16(13):6257-6272.
|
[31] |
OTTO T,STIEGER B,METTKE P,et al.Tropospheric aqueous-phase oxidation of isoprene-derived dihydroxycarbonyl compounds[J].The Journal of Physical Chemistry A,2017,121(34):6460-6470.
|
[32] |
WITKOWSKI B,AL-SHARAFI M,GIERCZAK T.Kinetics and products of the aqueous-phase oxidation of β-caryophyllonic acid by hydroxyl radicals[J].Atmospheric Environment,2019,213:231-238.
|
[33] |
BUXTON G V,GREENSTOCK C L,HELMAN W P,et al.Critical Review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals (·OH/·O- in aqueous solution[J].Journal of Physical and Chemical Reference Data,1988,17(2):513-886.
|
[34] |
HERRMANN H,HOFFMANN D,SCHAEFER T,et al.Tropospheric aqueous-phase free-radical chemistry:radical sources,spectra,reaction kinetics and prediction tools[J].ChemPhysChem,2010,11(18):3796-3822.
|
[35] |
FANG T,LAKEY P S J,RIVERA-RIOS J C,et al.Aqueous-phase decomposition of isoprene hydroxy hydroperoxide and hydroxyl radical formation by fenton-like reactions with iron ions[J].The Journal of Physical Chemistry A,2020,124(25):5230-5236.
|
[36] |
WANG Y,ZHAO J,LIU H H,et al.Photooxidation of methacrolein in Fe(Ⅲ)-oxalate aqueous system and its atmospheric implication[J].Advances in Atmospheric Sciences 2021,38(7):1252-1263.
|
[37] |
LIU Y,HADDAD I E,SCARFOGLIERO M,et al.In-cloud processes of methacrolein under simulated conditions-Part 1:aqueous phase photooxidation[J].Atmospheric Chemistry and Physics,2009,9:5093-5105.
|
[38] |
SARANG K,OTTO T,RUDZINSKI K,et al.Reaction kinetics of green leaf volatiles with sulfate,hydroxyl,and nitrate radicals in tropospheric aqueous phase[J].Environmental Science & Technology,2021,55(20):13666-13676.
|
[39] |
ABICHANDANI B C T,JATKAR S K K.Dissociation constants of ortho-,meta and para-hydroxy benzoic acids,gallic acid,catechol,resorcinol,hydroquinone,pyrogallol and phloroglucinol[J].Journal of the Indian Institute of Science,1938,21:417.
|
[40] |
HANAI T,KOIZUMI K,KINOSHITA T,et al.Prediction of pKa values of phenolic and nitrogen-containing compounds by computational chemical analysis compared to those measured by liquid chromatography[J].Journal of Chromatography A,1997,762(1/2):55-61.
|
[41] |
HANAI T.Simulation of chromatography of phenolic compounds with a computational chemical method[J].Journal of Chromatography A,2004,1027(1/2):279-287.
|
[42] |
LIU H X,YANG G L,WANG D X,et al.Determination of dissociation constants of complicated compounds by capillary zone electrophoresis[J].Chinese Journal of Chemistry,2001,19(7):675-680.
|
[43] |
SHI G L,XU J,PENG X,et al.pH of aerosols in a polluted atmosphere:source contributions to highly acidic aerosol[J].Environmental Science & Technology,2017,51(8):4289-4296.
|
[44] |
SONG S J,GAO M,XU W Q,et al.Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models[J].Atmospheric Chemistry and Physics,2018,18(10):7423-7438.
|
[45] |
SMITH J D,KINNEY H,ANASTASIO C.Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol[J].Physical Chemistry Chemical Physics,2015,17(15):10227-10237.
|
[46] |
HEATH A A,EHRENHAUSER F S,VALSARAJ K T.Effects of temperature,oxygen level,ionic strength,and pH on the reaction of benzene with hydroxyl radicals in aqueous atmospheric systems[J].Journal of Environmental Chemical Engineering,2013,1(4):822-830.
|
[47] |
LAND E,EBERT M.Pulse radiolysis studies of aqueous phenol.Water elimination from dihydroxycyclohexadienyl radicals to form phenoxyl[J].Transactions of the Faraday Society,1967,63:1181-1190.
|
[48] |
ABELLAR K A,COPE J D,NGUYEN T B.Second-order kinetic rate coefficients for the aqueous-phase hydroxyl radical (OH) oxidation of isoprene-derived secondary organic aerosol compounds at 298 K[J].Environmental Science & Technology,2021,55(20):13728-13736.
|
[49] |
OTTO T,SCHAEFER T,HERRMANN H.Aqueous-phase oxidation of terpene-derived acids by atmospherically relevant radicals[J].The Journal of Physical Chemistry A,2018,122(47):9233-9241.
|
[50] |
HERRMANN H,SCHAEFER T,TILGNER A,et al.Tropospheric aqueous-phase chemistry:kinetics,mechanisms,and its coupling to a changing gas phase[J].Chemical Reviews,2015,115(10):4259-4334.
|
[51] |
PERCIVAL C,MCGILLEN M.Overview of Structure-Activity Relationship Methods for Predicting Gas-Phase Rate Coefficients[M].Springer Netherlands,2008:47-59.
|
[52] |
FINEWAX Z,de GOUW J A,ZIEMANN P J.Products and secondary organic aerosol yields from the OH and NO3 radical-initiated oxidation of resorcinol[J].ACS Earth and Space Chemistry,2019,3(7):1248-1259.
|