Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
Citation: SUN Li-hua, MEI Xiao-yu, GAO Cheng, FENG Cui-min. MECHANISMS AND EFFICIENCY OF REMOVAL OF ORGANIC MATTER AND ANTIBIOTIC RESISTANCE GENES IN SECONDARY EFFLUENT OF WATARPLANTS BY DIFFERENT PERSULFATE ACTIVATION METHODS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 74-80,134. doi: 10.13205/j.hjgc.202209010

MECHANISMS AND EFFICIENCY OF REMOVAL OF ORGANIC MATTER AND ANTIBIOTIC RESISTANCE GENES IN SECONDARY EFFLUENT OF WATARPLANTS BY DIFFERENT PERSULFATE ACTIVATION METHODS

doi: 10.13205/j.hjgc.202209010
  • Received Date: 2021-09-14
    Available Online: 2022-11-09
  • This paper used iron nanoparticles(nFe) and ultrasound(US) to activate persulfate(PS), then explored the removal efficiencies of PS, nFe/PS and US/PS in pre-oxidation processes on antibiotic resistance genes(ARGs) and dissolved organic matter(DOC) in secondary effluent, and discussed their removal mechanisms. The results showed that the optimal dosages of PS, nFe and US were determined to be 4 mmol/L, 2 mmol/L and 40 kHz, respectively. After PS, nFe/PS and US/PS pre-oxidation reactions, concentrations of ARGs(tetA, tetC, sulⅠ, sulⅡ), intⅠ1 and 16 S rRNA were 104.38~106.82, 104.02~105.97 and 104.02~106.98, respectively. Under the optimal reaction conditions, the removal rates of DOC were 11.2%, 17.2% and 15.3%, respectively. Among them, nFe/PS had the best removal effect on the above-mentioned ARGs and DOC. In the three pre-oxidation processes, OH· and SO4-· all participated in the reaction. Compared with PS alone and US/PS combined processes, the content of OH· and SO4-· generated was the highest in the pre-oxidation of nFe/PS, and the concentration of SO4-· was the highest in the reaction system. Therefore, the nFe/PS pre-oxidation method could be used as a subsequent treatment to effectively remove ARGs and DOC in the secondary effluent.
  • [1]
    BIROŠOVÁ L,MACKUL’AK T,BODÍK I,et al.Pilot study of seasonal occurrence and distribution of antibiotics and drug-resistant bacteria in wastewater treatment plants in Slovakia[J].Science of the Total Environment,2014,490:440-444.
    [2]
    罗义,周启星.抗生素抗性基因(ARGs):一种新型环境污染物[J].环境科学学报,2008,28(8):1499-1505.
    [3]
    DAVIES J,DAVIES D.Origins and evolution of antibiotic resistance[J].Microbiology and Molecular Biology Reviews,2010,74(3):417-433.
    [4]
    段然.哈尔滨市污水厂中抗生素抗性基因分布及强化去除研究[D].哈尔滨:哈尔滨工业大学,2014.
    [5]
    GARRIDO-CARDENAS J A,ESTEBAN-GARCÍA B,AGÜERA A,et al.Wastewater treatment by advanced oxidation process and their worldwide research trends[J].International Journal of Environmental Research and Public Health,2020,17(1):170.
    [6]
    李社锋,王文坦,邵雁,等.活化过硫酸盐高级氧化技术的研究进展及工程应用[J].环境工程,2016,34(9):171-174.
    [7]
    ANIPSITAKIS G P,DIONYSIOU D D.Radical generation by the interaction of transition metals with common oxidants[J].Environmental Science & Technology,2004,38(13):3705-3712.
    [8]
    AHMED M M,CHIRON S.Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater[J].Water Research,2014,48:229-236.
    [9]
    GIRI R R,OZAKI H,MORIGAKI T,et al.UV photolysis of perfluorooctanoic acid (PFOA) in dilute aqueous solution[J].Water Science and Technology,2011,63(2):276-282.
    [10]
    HUANG K C,ZHAO Z Q,HOAG G E,et al.Degradation of volatile organic compounds with thermally activated persulfate oxidation[J].Chemosphere,2005,61(4):551-560.
    [11]
    CHENG J,VECITIS C D,PARK H,et al.Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater:environmental matrix effects[J].Environmental Science & Technology,2008,42(21):8057-8063.
    [12]
    MATZEK L W,CARTER K E.Activated persulfate for organic chemical degradation:a review[J].Chemosphere,2016,151:178-188.
    [13]
    ZHANG L L,JIN H,MA H K,et al.Oxidative damage of antibiotic resistant E.coli and gene in a novel sulfidated micron zero-valent activated persulfate system[J].Chemical Engineering Journal,2020,381:122787.
    [14]
    ZHANG B T,ZHANG Y,TENG Y G,et al.Sulfate radical and its application in decontamination technologies[J].Critical Reviews in Environmental Science and Technology,2015,45(16):1756-1800.
    [15]
    LI B Z,ZHU J.Simultaneous degradation of 1,1,1-trichloroethane and solvent stabilizer 1,4-dioxane by a sono-activated persulfate process[J].Chemical Engineering Journal,2016,284:750-763.
    [16]
    罗晓,袁立霞,郑向阳,等.制药废水中抗性基因和微生物群落相关性研究[J].环境科学与技术,2018,41(12):30-36

    ,48.
    [17]
    OLMEZ-HANCI T,ARSLAN-ALATON I,GENC B.Bisphenol A treatment by the hot persulfate process:oxidation products and acute toxicity[J].Journal of Hazardous Materials,2013,263:283-290.
    [18]
    龙海波,高焕方,李聪,等.铁活化过硫酸盐修复石油烃污染土壤的研究进展[J].化工环保,2019,39(3):241-246.
    [19]
    李永涛,岳东,熊鑫高原,等.零价铁活化过硫酸钠降解含油废水[J].环境工程学报,2016,10(8):4239-4243.
    [20]
    张羽,高春阳,陈昌照,等.零价铁活化过硫酸钠体系降解污染土壤中的多环芳烃[J].环境工程学报,2019,13(4):955-962.
    [21]
    杨晴,孙昕,李鹏飞,等.超声活化过硫酸盐降解甲基橙的影响因素研究[J].环境科学学报,2020,40(8):2715-2721.
    [22]
    CHEN W S,HUANG C P.Mineralization of dinitrotoluenes in aqueous solution by sono-activated persulfate enhanced with electrolytes[J].Ultrasonics Sonochemistry,2019,51:129-137.
    [23]
    YAN W L,HERZING A A,KIELY C J,et al.Nanoscale zero-valent iron (nZVI):aspects of the core-shell structure and reactions with inorganic species in water[J].Journal of Contaminant Hydrology,2010,118(3/4):96-104.
    [24]
    何光瑞.超声零价铁活化过硫酸盐去除水中阿莫西林和卡马西平的研究[D].武汉:华中科技大学,2017.
    [25]
    O’CARROLL D,SLEEP B,KROL M,et al.Nanoscale zero valent iron and bimetallic particles for contaminated site remediation[J].Advances in Water Resources,2013,51:104-122.
    [26]
    ZHAO J Y,ZHANG Y B,QUAN X,et al.Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature[J].Separation and Purification Technology,2010,71(3):302-307.
    [27]
    MATTA R,TLILI S,CHIRON S,et al.Removal of carbamazepine from urban wastewater by sulfate radical oxidation[J].Environmental Chemistry Letters,2011,9(3):347-353.
    [28]
    XIA D H,YIN R,SUN J L,et al.Natural magnetic pyrrhotite as a high-Efficient persulfate activator for micropollutants degradation:radicals identification and toxicity evaluation[J].Journal of Hazardous Materials,2017,340:435-444.
    [29]
    WU Y W,CHEN X T,HAN Y,et al.Highly efficient utilization of nano-Fe (0) embedded in mesoporous carbon for activation of peroxydisulfate[J].Environmental Science & Technology,2019,53(15):9081-9090.
    [30]
    OH W D,DONG Z L,LIM T T.Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal:current development,challenges and prospects[J].Applied Catalysis B:Environmental,2016,194:169-201.
    [31]
    沈阳.超声空化的理论研究及影响因素的模拟分析[D].沈阳:东北大学,2014.
  • Relative Articles

    [1]GU Yonggang, YU Lei, ZHANG Shuhan, MENG Qingyi. EVALUATION OF ENTROPY INCREASE INHIBITION EFFECT OF TREATMENT OF INFERIOR V-CLASS WATER BODIES IN TYPICAL RURAL RIVER COURSES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 128-134. doi: 10.13205/j.hjgc.202402015
    [2]WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016
    [5]LI Jingnan, WANG Qunhui, LIANG Baorui, WANG Wanqing, LIU Junjie. EFFECTS OF GARDEN WASTE ON EMISSION REDUCTION AND MICROBIAL COMMUNITY IN COASTAL SALINE SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 95-101. doi: 10.13205/j.hjgc.202401013
    [6]YU Jie, ZHANG Yong, LI Qingyao. DECOUPLING EFFECT AND DRIVING MECHANISM OF CARBON EMISSION REDUCTION IN MANUFACTURING INDUSTRY: A TWO-DIMENSIONAL ANALYSIS FRAMEWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 150-162. doi: 10.13205/j.hjgc.202310019
    [7]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [8]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [9]WANG Zhiqi, LI Jianguo, PENG Binbin, XIANG Wanli. DRIVING FACTORS AND DECOUPLING EFFECT ANALYSIS OF TRANSPORTATION CARBON EMISSIONS IN WESTERN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 213-222. doi: 10.13205/j.hjgc.202310025
    [10]MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
    [11]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [12]LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024
    [13]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [14]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [15]SUN Yao, LI Xiaojing, LI Junqi, WANG Wenliang, XUE Chonghua, WANG Jianlong, WANG Wenhai. DISCUSSION ON EXISTING PROBLEMS AND COUNTERMEASURES IN SPONGE CITY MONITORING AND EVALUATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 182-187. doi: 10.13205/j.hjgc.202204026
    [16]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [17]ZHANG Xing, QIAN Zhen-qing, ZHANG De-feng, ZHU Tao, YUAN Qian-cheng, YE Ze-fu. RESEARCH PROGRESS OF COOKING FUME EMISSION CHARACTERISTICS AND PURIFICATION TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 37-41,20. doi: 10.13205/j.hjgc.202001005
    [18]YIN Ding-kun, CHEN Zheng-xia, YANG Meng-qi, JIA Hai-feng, XU Ke, WANG Teng-xu. EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 151-157. doi: 10.13205/j.hjgc.202004027
    [19]ZHANG Li, XIE Zi-xuan, CAO Li-bin, WU Qiong, CAI Bo-feng. DISCUSSION ON EVALUATION METHOD ON CARBON DIOXIDE EMISSIONS PEAKING FOR CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 1-5,43. doi: 10.13205/j.hjgc.202011001
    [20]LI Han, WANG Jian-long, FENG Cui-min, CAI Zhi-wen, HE Cun-gang, LIU Yan. MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 145-150. doi: 10.13205/j.hjgc.202004026
  • Cited by

    Periodical cited type(13)

    1. 赵大洲,武宇杰,叶成秀,付依玮,邵怡菲,任泽宇. 生物质吸附剂去除重金属离子的研究进展. 皮革与化工. 2025(01): 17-21 .
    2. 郑凯远,陈红,绳俊,蔡冬清,薛罡,曾可佳,于鑫,叶沁辉. 污水处理厂碳排放核算方法的标准研究与修正建议. 东华大学学报(自然科学版). 2024(01): 134-144 .
    3. 刘小明. 电炉炼钢中CO_2排放量监测及控制研究. 山西冶金. 2024(02): 94-96 .
    4. 涂倩倩,沈鹏飞,刘鸣燕,张梓璇,余波,杨凯. 城镇污水处理厂碳排放核算方法及特征. 净水技术. 2024(06): 52-62 .
    5. 武成辉,周婧,马锦钰,霍冠峰. 非二氧化碳温室气体排放量化方法研究进展. 广东化工. 2024(20): 103-106 .
    6. 宣干,唐柏杨,李雨婷,张熙彤,刘伟京,操家顺,罗景阳,冯骞. 城镇污水收集系统直接碳排放的监测方法研究进展. 环境工程. 2024(11): 13-21 . 本站查看
    7. 娄明月,刘广兵,刘伟京,孟溪,施梦琦,郭明辰. 基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究. 环境工程. 2024(11): 61-71 . 本站查看
    8. 唐柏杨,宣干,杨诗瑶,刘伟京,薛朝霞,操家顺,罗景阳,冯骞. 重新审视化粪池的温室效应:回顾与展望. 环境工程. 2023(07): 14-21 . 本站查看
    9. 姚怡帆,荆玉姝,王丽艳,刘长青. 基于集成模型的污水处理厂出水总氮预测方法. 工业水处理. 2023(09): 187-194 .
    10. 佟素娟,薛同来. 基于PSO-ACO算法的再生水厂出水总磷预测模型研究. 现代盐化工. 2023(04): 35-37 .
    11. 欧阳伊雯,庞蘅洺,叶红丽,庞惠月,王照晴,高小峰,陆嘉麒. 重庆市城镇污水处理系统的碳排放特征及减污降碳措施建议. 环境工程学报. 2023(09): 2841-2847 .
    12. 张芳. 基于水质+水位检测的城镇排水管网排查重点研究. 工程技术研究. 2022(16): 148-150 .
    13. 孙锐,陈菊香. 基于AHP-FCE模型的污水处理厂运营管理综合评价与优化——以克拉玛依市A污水处理厂为例. 工程技术研究. 2022(18): 201-204+208 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.4 %FULLTEXT: 17.4 %META: 78.7 %META: 78.7 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.8 %其他: 0.8 %Central District: 0.4 %Central District: 0.4 %Perth Amboy: 1.2 %Perth Amboy: 1.2 %[]: 0.2 %[]: 0.2 %上海: 4.8 %上海: 4.8 %东莞: 1.2 %东莞: 1.2 %临汾: 0.2 %临汾: 0.2 %乌兰察布: 0.2 %乌兰察布: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊春: 0.2 %伊春: 0.2 %保定: 0.4 %保定: 0.4 %六安: 0.2 %六安: 0.2 %北京: 6.0 %北京: 6.0 %南京: 1.6 %南京: 1.6 %南昌: 0.2 %南昌: 0.2 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %四平: 0.4 %四平: 0.4 %天津: 1.4 %天津: 1.4 %宁波: 0.4 %宁波: 0.4 %宣城: 1.0 %宣城: 1.0 %宿州: 0.4 %宿州: 0.4 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.2 %广州: 1.2 %庆阳: 0.2 %庆阳: 0.2 %张家口: 1.4 %张家口: 1.4 %成都: 1.7 %成都: 1.7 %扬州: 0.4 %扬州: 0.4 %昆明: 1.4 %昆明: 1.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.8 %杭州: 0.8 %松原: 0.6 %松原: 0.6 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.6 %武汉: 0.6 %泰安: 0.2 %泰安: 0.2 %济南: 0.4 %济南: 0.4 %济源: 0.2 %济源: 0.2 %深圳: 2.3 %深圳: 2.3 %温州: 0.4 %温州: 0.4 %湖州: 0.6 %湖州: 0.6 %漯河: 0.6 %漯河: 0.6 %濮阳: 0.2 %濮阳: 0.2 %白银: 0.2 %白银: 0.2 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.6 %福州: 0.6 %芒廷维尤: 28.5 %芒廷维尤: 28.5 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.4 %苏州: 0.4 %西宁: 12.0 %西宁: 12.0 %西安: 0.2 %西安: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %郑州: 0.4 %郑州: 0.4 %长春: 0.2 %长春: 0.2 %长沙: 1.2 %长沙: 1.2 %青岛: 0.2 %青岛: 0.2 %香港: 0.6 %香港: 0.6 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他Central DistrictPerth Amboy[]上海东莞临汾乌兰察布乌鲁木齐伊春保定六安北京南京南昌合肥哈尔滨四平天津宁波宣城宿州常州常德广州庆阳张家口成都扬州昆明晋城朝阳杭州松原格兰特县武汉泰安济南济源深圳温州湖州漯河濮阳白银石家庄福州芒廷维尤芝加哥苏州西宁西安贵阳运城遵义郑州长春长沙青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (248) PDF downloads(18) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return