Grasping the characteristics and sources of non-point source pollution load in the Gansu section of the Yellow River Basin is an important basis for improving the level of water pollution control on a regional scale. Based on the DPeRS model, this study selected four pollution indicators of total nitrogen, total phosphorus, ammonia nitrogen and chemical oxygen demand, from the five major pollution types, farmland runoff, urban runoff, livestock and poultry breeding, rural life, and soil erosion. Pollution load estimation, pollution source analysis and spatial distribution analysis were carried out on non-point source pollution of nine cities(prefectures) and 58 districts(counties). The results showed that: from the model estimation results, the average non-point source pollution load of total nitrogen, total phosphorus, ammonia nitrogen and chemical oxygen demand in the entire basin in 2018 was 65.6,11.8,19.1, 77.2 kg/km2. From the regional scale analysis, the area with the highest non-point source pollution load of total nitrogen and total phosphorus in the Yellow River Basin of Gansu was Anning District, Lanzhou, which accounted for 10.83% and 5.16% of the total load of the entire basin respectively; the area with the highest non-point source pollution load of ammonia nitrogen and chemical oxygen demand was Linxia City in Linxia Prefecture, respectively, accounted for 26.23% and 56.56% of the total load of the entire basin. From the analysis of pollution sources, the primary pollution sources of total nitrogen, total phosphorus, ammonia nitrogen and chemical oxygen demand were farmland runoff, soil erosion, farmland runoff, and livestock and poultry farming. From the spatial distribution analysis, the total non-point source pollution load of each district(county) of the Yellow River Basin presented a distribution characteristic of middle-high and low sides. The areas with heavier pollution load were mainly concentrated in local areas such as the Lanzhou section of the Yellow River, the Linxia section of the Daxia River, and the Tianshui section of the Weihe River.
LI H Z,ZHANG M X. A review on the calculation of non-point source pollution loads[J]. IOP Conference Series Earth and Environmental Science,2019,344:012138.
HENRI C V, HARTER T, DIAMANTOPOULOS E. On the conceptual complexity of non-point source management:impact of spatial variability[J]. Hydrology and Earth System Sciences,2020,24(3):1189-1209.
[14]
WANG X L,WANG Q,WU C Q,et al. A method coupled with remote sensing data to evaluate non-point source pollution in theXin’anjiang catchment of China[J]. Science of the Total Environment,2012,430:132-143.