Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
Citation: CAO Qi, HE Yu-heng, ZHUO Gui-hua, LIU Chang-qing, CHEN Jian-yong, ZHENG Yu-yi. EFFECT OF INITIAL pH VALUE ON METHANE PRODUCTION FROM RESIDUE AFTER ANAEROBIC CO-FERMENTATIVE HYDROGEN PRODUCTION OF SEWAGE SLUDGE AND FOOD WASTE UNDER THERMOPHILIC OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 150-157. doi: 10.13205/j.hjgc.202209020

EFFECT OF INITIAL pH VALUE ON METHANE PRODUCTION FROM RESIDUE AFTER ANAEROBIC CO-FERMENTATIVE HYDROGEN PRODUCTION OF SEWAGE SLUDGE AND FOOD WASTE UNDER THERMOPHILIC OPERATION

doi: 10.13205/j.hjgc.202209020
  • Received Date: 2022-03-11
    Available Online: 2022-11-09
  • Simultaneously producing hydrogen and methane via sewage sludge and food waste anaerobic co-digestion, widely regarded as one of the promising methods for renewable energy, plays an important role in carbon emission reduction. This study explored the effect of different initial pH values on the methane production from the residue from anaerobic co-fermentative hydrogen production of sewage sludge and food waste through batch experiments under thermophilic operation(55±1)℃. The results showed that properly increasing the alkalinity of the initial substrate of residue from hydrogen production improved methanogenic performance, while the initial pH=6 inhibited methane production. The highest value of maximum methane concentration(79.08%), cumulative methane yield(101 mL/g DS), and maximum methane production rate(12.21 mL/d) were all found in the test group of initial pH=8. The degradation ratios of total carbohydrate and total protein with different initial pH values were positively correlated with the cumulative methane yield. And total carbohydrate and total protein degradation were also the highest at initial pH=8, with values of 6078 mg/L~55.70% and 4710 mg/L~69.67%, respectively. Among these, the degradation rate of total protein was higher than total carbohydrate. Meanwhile, the pH value after digestion from different initial pH values tended to be 7.5 or so.
  • [1]
    胡鞍钢.中国实现2030年前碳达峰目标及主要途径[J].北京工业大学学报(社会科学版),2021,21(3

    ):1-15.
    [2]
    ZHU R,HE L,LI Q,et al.Mechanism study of improving anaerobic co-digestion performance of waste activated sludge and food waste by Fe3O4[J].Journal of Environmental Management,2021,300:113745.
    [3]
    HUANG H N,CHEN Y G,ZHENG X,et al.Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge:the role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer[J].Bioresource Technology,2016,218(1):1284-1289.
    [4]
    张国华,张志红,黄江丽,等.餐厨垃圾厌氧发酵连续产氢产甲烷的试验研究[J].中国沼气,2016,34(4):8-12.
    [5]
    AWE O W,ZHAO Y,NZIHOU A,et al.Anaerobic co-digestion of food waste and FOG with sewage sludge-realising its potential in Ireland[J].The International journal of environmental studies,2018,75(3):496-517.
    [6]
    KUMAR A,SAMADDER S R.Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste:a review[J].Energy,2020,197:117253.
    [7]
    KOCH K,HELMREICH B,DREWES J E.Co-digestion of food waste in municipal wastewater treatment plants:effect of different mixtures on methane yield and hydrolysis rate constant[J].Applied Energy,2015,137:250-255.
    [8]
    JAVKHLAN A,GIOVANNI E,YEH D H,et al.Enhanced Anaerobic Digestion of Food Waste by Supplementing Trace Elements:role of Selenium (Ⅵ) and Iron (Ⅱ)[J].Frontiers in Environmental Science,2016,4(61):1-11.
    [9]
    MEHARIYA S,PATEL A K,OBULISAMY P K,et al.Co-digestion of food waste and sewage sludge for methane production:current status and perspective[J].Bioresource Technology,2018,265(1):519-531.
    [10]
    NGHIEM L D,KOCH K,BOLZONELLA D,et al.Full scale co-digestion of wastewater sludge and food waste:bottlenecks and possibilities[J].Renewable & Sustainable Energy Reviews,2017,72:354-362.
    [11]
    ARELLI V,MAMINDLAPELLI N K,BEGUM S,et al.Solid state anaerobic digestion of food waste and sewage sludge:impact of mixing ratios and temperature on microbial diversity,reactor stability and methane yield[J].Science of the Total Environment,2021,793:148586.
    [12]
    WANG P,ZHENG Y,LIN P,et al.Effects of graphite,graphene,and graphene oxide on the anaerobic co-digestion of sewage sludge and food waste:attention to methane production and the fate of antibiotic resistance genes[J].Bioresource Technology,2021,339:125585.
    [13]
    ZHANG M,WANG Y C.Impact of biochar supported nano zero-valent iron on anaerobic co-digestion of sewage sludge and food waste:methane production,performance stability and microbial community structure[J].Bioresource Technology,2021,340:125715.
    [14]
    GU J,LIU R,CHENG Y,et al.Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions:focusing on synergistic effects on methane production[J].Bioresource Technology,2020,301:122765.
    [15]
    NARAN E,TOOR U A,KIM D J.Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production[J].International Biodeterioration & Biodegradation,2016,113:17-21.
    [16]
    LIN Y Q,WANG D H,LIANG J J,et al.Mesophilic anaerobic co-digestion of pulp and paper sludge and food waste for methane production in a fed-batch basis[J].Environmental Technology,2012,33(22/23/24):2627-2633.
    [17]
    LUNPROM S,PHANDUANG O,SALAKKAM A,et al.Bio-hythane production from residual biomass of Chlorella sp.biomass through a two-stage anaerobic digestion[J].International Journal of Hydrogen Energy,2019,44(6):3339-3346.
    [18]
    ROY S,DAS D.Biohythane production from organic wastes:present state of art[J].Environmental Science and Pollution Research,2016,23(10):9391-9410.
    [19]
    XIAO B Y,QIN Y,QU J,et al.Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste:performance,energy balance and reaction process[J].Energy Conversion and Management,2018,156:215-223.
    [20]
    RUGGERI B,TOMMASI T,SASSI G.Energy balance of dark anaerobic fermentation as a tool for sustainability analysis[J].International Journal of Hydrogen Energy,2010,35(19):10202-10211.
    [21]
    罗鸿信,林鸿,余育方,等.污泥与餐厨垃圾联合厌氧发酵产氢余物产甲烷条件优化研究[J].环境工程学报,2014,8(8):3449-3453.
    [22]
    郑育毅,林鸿,林志龙,等.不同碱剂对污泥与餐厨垃圾联合厌氧发酵产氢余物产甲烷的影响[J].环境工程学报,2016,10(1):393-398.
    [23]
    CHEN Y,LIU H,ZHENG X,et al.New method for enhancement of bioenergy production from municipal organic wastes via regulation of anaerobic fermentation process[J].Applied Energy,2017,196:190-198.
    [24]
    BALDI F,PECORINI I,LANNELLI R.Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production[J].Renewable Energy,2019,143:1755-1765.
    [25]
    SAHLSTROM L.A review of survival of pathogenic bacteria in organic waste used in biogas plants[J].Bioresource Technology,2003,87(2):161-166.
    [26]
    LIN Y,WU S,WANG D.Hydrogen-methane production from pulp & paper sludge and food waste by mesophilic-thermophilic anaerobic co-digestion[J].International Journal of Hydrogen Energy,2013,38(35):15055-15062.
    [27]
    LUO H X,LI Y,YU Y F,et al.Influence of the Inoculation Volume on Methanogenesis by Thermophilic Anaerobic Digestion with Residue from Hydrogen Production Fermentation Using Combined Substrate of Sludge and Food Waste[J].Advanced Materials Research,2014,878:496-503.
    [28]
    CHAKRABORTY D,KARTHIKEYAN O P,SELVAM A,et al.Co-digestion of food waste and chemically enhanced primary treated sludge in a continuous stirred tank reactor[J].Biomass & Bioenergy,2018,111:232-240.
    [29]
    LOGAN B E,OH S E,KIM I S,et al.Biological hydrogen production measured in batch anaerobic respirometers[J].Environmental Science & Technology,2002,36(11):2530-2535.
    [30]
    谢育红,陆源,刘常青,等.污泥前期处理对测定其总糖的影响研究[J].环境科学与技术,2014,37(4):156-160.
    [31]
    赵庆祥.污泥资源化技术[M].化学工业出版社,2002.
    [32]
    悉旦立.环境监测(修订版)[M].高等教育出版社,1995.
    [33]
    任南琪,马放.污染控制微生物学原理与应用[M].化学工业出版社,2003.
    [34]
    林加涵.现代生物学实验[M].施普林格出版社,2000.
    [35]
    WU L J,HIGASHIMORI A,QIN Y,et al.Upgrading of mesophilic anaerobic digestion of waste activated sludge by thermophilic pre-fermentation and recycle:process performance and microbial community analysis[J].Fuel,2016,169:7-14.
    [36]
    蒲贵兵,吕波,孙可伟,等.初始pH值对泔脚发酵产氢余物甲烷化的强化研究[J].环境工程学报,2010,4(3):633-638.
    [37]
    NOLLA-Ardevol V,STROUS M,TEGETMEYER H E.Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions:biogas production,metagenome,and metatranscriptome[J].Frontiers in Microbiology,2015,6:1-21.
    [38]
    RAWOOF S A A,KUMAR P S,VO D-V N,et al.Sequential production of hydrogen and methane by anaerobic digestion of organic wastes:a review[J].Environmental Chemistry Letters,2020:1-21.
    [39]
    De GIOANNIS G,MUNTONI A,POLETTINI A,et al.Energy recovery from one- and two-stage anaerobic digestion of food waste[J].Waste Management,2017,68:595-602.
    [40]
    鲁珍,周兴求,伍健东.初始pH对产氢发酵液厌氧产甲烷的影响研究[J].环境工程学报,2011,5(5):1115-1118.
    [41]
    SILVA F M S,MAHLER C F,OLIVEIRA L B,et al.Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste,sewage sludge and glycerol[J].Waste Management,2018,76:339-349.
    [42]
    HOU T,ZHAO J,LEI Z,et al.Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation[J].Science of the Total Environment,2021,761:143234.
    [43]
    郑育毅,林鸿,罗鸿信,等.污泥与餐厨垃圾联合厌氧发酵产氢余物产甲烷过程底物指标变化[J].环境工程学报,2015,9(1):425-430.
    [44]
    LI Y,CHEN Y,WU J.Enhancement of methane production in anaerobic digestion process:a review[J].Applied Energy,2019,240:120-137.
    [45]
    ZOU X M,YANG R J,ZHOU X,et al.Effects of mixed alkali-thermal pretreatment on anaerobic digestion performance of waste activated sludge[J].Journal of Cleaner Production,2020,259:120940.
    [46]
    YANG Z Y,WANG W,LIU C,et al.Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion:selection of strains and reactor performance evaluation[J].Water Research,2019,155:214-224.
    [47]
    SUNYOTO N M S,ZHU M,ZHANG Z,et al.Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste[J].Bioresource Technology,2016,219:29-36.
    [48]
    WANG Q,PENG L,SU H.The effect of a buffer function on the semi-continuous anaerobic digestion[J].Bioresource Technology,2013,139:43-49.
  • Relative Articles

    [1]GU Yonggang, YU Lei, ZHANG Shuhan, MENG Qingyi. EVALUATION OF ENTROPY INCREASE INHIBITION EFFECT OF TREATMENT OF INFERIOR V-CLASS WATER BODIES IN TYPICAL RURAL RIVER COURSES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 128-134. doi: 10.13205/j.hjgc.202402015
    [2]WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016
    [5]LI Jingnan, WANG Qunhui, LIANG Baorui, WANG Wanqing, LIU Junjie. EFFECTS OF GARDEN WASTE ON EMISSION REDUCTION AND MICROBIAL COMMUNITY IN COASTAL SALINE SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 95-101. doi: 10.13205/j.hjgc.202401013
    [6]YU Jie, ZHANG Yong, LI Qingyao. DECOUPLING EFFECT AND DRIVING MECHANISM OF CARBON EMISSION REDUCTION IN MANUFACTURING INDUSTRY: A TWO-DIMENSIONAL ANALYSIS FRAMEWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 150-162. doi: 10.13205/j.hjgc.202310019
    [7]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [8]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [9]WANG Zhiqi, LI Jianguo, PENG Binbin, XIANG Wanli. DRIVING FACTORS AND DECOUPLING EFFECT ANALYSIS OF TRANSPORTATION CARBON EMISSIONS IN WESTERN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 213-222. doi: 10.13205/j.hjgc.202310025
    [10]MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
    [11]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [12]LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024
    [13]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [14]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [15]SUN Yao, LI Xiaojing, LI Junqi, WANG Wenliang, XUE Chonghua, WANG Jianlong, WANG Wenhai. DISCUSSION ON EXISTING PROBLEMS AND COUNTERMEASURES IN SPONGE CITY MONITORING AND EVALUATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 182-187. doi: 10.13205/j.hjgc.202204026
    [16]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [17]ZHANG Xing, QIAN Zhen-qing, ZHANG De-feng, ZHU Tao, YUAN Qian-cheng, YE Ze-fu. RESEARCH PROGRESS OF COOKING FUME EMISSION CHARACTERISTICS AND PURIFICATION TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 37-41,20. doi: 10.13205/j.hjgc.202001005
    [18]YIN Ding-kun, CHEN Zheng-xia, YANG Meng-qi, JIA Hai-feng, XU Ke, WANG Teng-xu. EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 151-157. doi: 10.13205/j.hjgc.202004027
    [19]ZHANG Li, XIE Zi-xuan, CAO Li-bin, WU Qiong, CAI Bo-feng. DISCUSSION ON EVALUATION METHOD ON CARBON DIOXIDE EMISSIONS PEAKING FOR CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 1-5,43. doi: 10.13205/j.hjgc.202011001
    [20]LI Han, WANG Jian-long, FENG Cui-min, CAI Zhi-wen, HE Cun-gang, LIU Yan. MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 145-150. doi: 10.13205/j.hjgc.202004026
  • Cited by

    Periodical cited type(13)

    1. 赵大洲,武宇杰,叶成秀,付依玮,邵怡菲,任泽宇. 生物质吸附剂去除重金属离子的研究进展. 皮革与化工. 2025(01): 17-21 .
    2. 郑凯远,陈红,绳俊,蔡冬清,薛罡,曾可佳,于鑫,叶沁辉. 污水处理厂碳排放核算方法的标准研究与修正建议. 东华大学学报(自然科学版). 2024(01): 134-144 .
    3. 刘小明. 电炉炼钢中CO_2排放量监测及控制研究. 山西冶金. 2024(02): 94-96 .
    4. 涂倩倩,沈鹏飞,刘鸣燕,张梓璇,余波,杨凯. 城镇污水处理厂碳排放核算方法及特征. 净水技术. 2024(06): 52-62 .
    5. 武成辉,周婧,马锦钰,霍冠峰. 非二氧化碳温室气体排放量化方法研究进展. 广东化工. 2024(20): 103-106 .
    6. 宣干,唐柏杨,李雨婷,张熙彤,刘伟京,操家顺,罗景阳,冯骞. 城镇污水收集系统直接碳排放的监测方法研究进展. 环境工程. 2024(11): 13-21 . 本站查看
    7. 娄明月,刘广兵,刘伟京,孟溪,施梦琦,郭明辰. 基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究. 环境工程. 2024(11): 61-71 . 本站查看
    8. 唐柏杨,宣干,杨诗瑶,刘伟京,薛朝霞,操家顺,罗景阳,冯骞. 重新审视化粪池的温室效应:回顾与展望. 环境工程. 2023(07): 14-21 . 本站查看
    9. 姚怡帆,荆玉姝,王丽艳,刘长青. 基于集成模型的污水处理厂出水总氮预测方法. 工业水处理. 2023(09): 187-194 .
    10. 佟素娟,薛同来. 基于PSO-ACO算法的再生水厂出水总磷预测模型研究. 现代盐化工. 2023(04): 35-37 .
    11. 欧阳伊雯,庞蘅洺,叶红丽,庞惠月,王照晴,高小峰,陆嘉麒. 重庆市城镇污水处理系统的碳排放特征及减污降碳措施建议. 环境工程学报. 2023(09): 2841-2847 .
    12. 张芳. 基于水质+水位检测的城镇排水管网排查重点研究. 工程技术研究. 2022(16): 148-150 .
    13. 孙锐,陈菊香. 基于AHP-FCE模型的污水处理厂运营管理综合评价与优化——以克拉玛依市A污水处理厂为例. 工程技术研究. 2022(18): 201-204+208 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.4 %FULLTEXT: 17.4 %META: 78.7 %META: 78.7 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.8 %其他: 0.8 %Central District: 0.4 %Central District: 0.4 %Perth Amboy: 1.2 %Perth Amboy: 1.2 %[]: 0.2 %[]: 0.2 %上海: 4.8 %上海: 4.8 %东莞: 1.2 %东莞: 1.2 %临汾: 0.2 %临汾: 0.2 %乌兰察布: 0.2 %乌兰察布: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊春: 0.2 %伊春: 0.2 %保定: 0.4 %保定: 0.4 %六安: 0.2 %六安: 0.2 %北京: 6.0 %北京: 6.0 %南京: 1.6 %南京: 1.6 %南昌: 0.2 %南昌: 0.2 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %四平: 0.4 %四平: 0.4 %天津: 1.4 %天津: 1.4 %宁波: 0.4 %宁波: 0.4 %宣城: 1.0 %宣城: 1.0 %宿州: 0.4 %宿州: 0.4 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.2 %广州: 1.2 %庆阳: 0.2 %庆阳: 0.2 %张家口: 1.4 %张家口: 1.4 %成都: 1.7 %成都: 1.7 %扬州: 0.4 %扬州: 0.4 %昆明: 1.4 %昆明: 1.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.8 %杭州: 0.8 %松原: 0.6 %松原: 0.6 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.6 %武汉: 0.6 %泰安: 0.2 %泰安: 0.2 %济南: 0.4 %济南: 0.4 %济源: 0.2 %济源: 0.2 %深圳: 2.3 %深圳: 2.3 %温州: 0.4 %温州: 0.4 %湖州: 0.6 %湖州: 0.6 %漯河: 0.6 %漯河: 0.6 %濮阳: 0.2 %濮阳: 0.2 %白银: 0.2 %白银: 0.2 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.6 %福州: 0.6 %芒廷维尤: 28.5 %芒廷维尤: 28.5 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.4 %苏州: 0.4 %西宁: 12.0 %西宁: 12.0 %西安: 0.2 %西安: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %郑州: 0.4 %郑州: 0.4 %长春: 0.2 %长春: 0.2 %长沙: 1.2 %长沙: 1.2 %青岛: 0.2 %青岛: 0.2 %香港: 0.6 %香港: 0.6 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他Central DistrictPerth Amboy[]上海东莞临汾乌兰察布乌鲁木齐伊春保定六安北京南京南昌合肥哈尔滨四平天津宁波宣城宿州常州常德广州庆阳张家口成都扬州昆明晋城朝阳杭州松原格兰特县武汉泰安济南济源深圳温州湖州漯河濮阳白银石家庄福州芒廷维尤芝加哥苏州西宁西安贵阳运城遵义郑州长春长沙青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (199) PDF downloads(5) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return