Citation: | CAO Qi, HE Yu-heng, ZHUO Gui-hua, LIU Chang-qing, CHEN Jian-yong, ZHENG Yu-yi. EFFECT OF INITIAL pH VALUE ON METHANE PRODUCTION FROM RESIDUE AFTER ANAEROBIC CO-FERMENTATIVE HYDROGEN PRODUCTION OF SEWAGE SLUDGE AND FOOD WASTE UNDER THERMOPHILIC OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 150-157. doi: 10.13205/j.hjgc.202209020 |
[1] |
胡鞍钢.中国实现2030年前碳达峰目标及主要途径[J].北京工业大学学报(社会科学版),2021,21(3
):1-15.
|
[2] |
ZHU R,HE L,LI Q,et al.Mechanism study of improving anaerobic co-digestion performance of waste activated sludge and food waste by Fe3O4[J].Journal of Environmental Management,2021,300:113745.
|
[3] |
HUANG H N,CHEN Y G,ZHENG X,et al.Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge:the role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer[J].Bioresource Technology,2016,218(1):1284-1289.
|
[4] |
张国华,张志红,黄江丽,等.餐厨垃圾厌氧发酵连续产氢产甲烷的试验研究[J].中国沼气,2016,34(4):8-12.
|
[5] |
AWE O W,ZHAO Y,NZIHOU A,et al.Anaerobic co-digestion of food waste and FOG with sewage sludge-realising its potential in Ireland[J].The International journal of environmental studies,2018,75(3):496-517.
|
[6] |
KUMAR A,SAMADDER S R.Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste:a review[J].Energy,2020,197:117253.
|
[7] |
KOCH K,HELMREICH B,DREWES J E.Co-digestion of food waste in municipal wastewater treatment plants:effect of different mixtures on methane yield and hydrolysis rate constant[J].Applied Energy,2015,137:250-255.
|
[8] |
JAVKHLAN A,GIOVANNI E,YEH D H,et al.Enhanced Anaerobic Digestion of Food Waste by Supplementing Trace Elements:role of Selenium (Ⅵ) and Iron (Ⅱ)[J].Frontiers in Environmental Science,2016,4(61):1-11.
|
[9] |
MEHARIYA S,PATEL A K,OBULISAMY P K,et al.Co-digestion of food waste and sewage sludge for methane production:current status and perspective[J].Bioresource Technology,2018,265(1):519-531.
|
[10] |
NGHIEM L D,KOCH K,BOLZONELLA D,et al.Full scale co-digestion of wastewater sludge and food waste:bottlenecks and possibilities[J].Renewable & Sustainable Energy Reviews,2017,72:354-362.
|
[11] |
ARELLI V,MAMINDLAPELLI N K,BEGUM S,et al.Solid state anaerobic digestion of food waste and sewage sludge:impact of mixing ratios and temperature on microbial diversity,reactor stability and methane yield[J].Science of the Total Environment,2021,793:148586.
|
[12] |
WANG P,ZHENG Y,LIN P,et al.Effects of graphite,graphene,and graphene oxide on the anaerobic co-digestion of sewage sludge and food waste:attention to methane production and the fate of antibiotic resistance genes[J].Bioresource Technology,2021,339:125585.
|
[13] |
ZHANG M,WANG Y C.Impact of biochar supported nano zero-valent iron on anaerobic co-digestion of sewage sludge and food waste:methane production,performance stability and microbial community structure[J].Bioresource Technology,2021,340:125715.
|
[14] |
GU J,LIU R,CHENG Y,et al.Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions:focusing on synergistic effects on methane production[J].Bioresource Technology,2020,301:122765.
|
[15] |
NARAN E,TOOR U A,KIM D J.Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production[J].International Biodeterioration & Biodegradation,2016,113:17-21.
|
[16] |
LIN Y Q,WANG D H,LIANG J J,et al.Mesophilic anaerobic co-digestion of pulp and paper sludge and food waste for methane production in a fed-batch basis[J].Environmental Technology,2012,33(22/23/24):2627-2633.
|
[17] |
LUNPROM S,PHANDUANG O,SALAKKAM A,et al.Bio-hythane production from residual biomass of Chlorella sp.biomass through a two-stage anaerobic digestion[J].International Journal of Hydrogen Energy,2019,44(6):3339-3346.
|
[18] |
ROY S,DAS D.Biohythane production from organic wastes:present state of art[J].Environmental Science and Pollution Research,2016,23(10):9391-9410.
|
[19] |
XIAO B Y,QIN Y,QU J,et al.Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste:performance,energy balance and reaction process[J].Energy Conversion and Management,2018,156:215-223.
|
[20] |
RUGGERI B,TOMMASI T,SASSI G.Energy balance of dark anaerobic fermentation as a tool for sustainability analysis[J].International Journal of Hydrogen Energy,2010,35(19):10202-10211.
|
[21] |
罗鸿信,林鸿,余育方,等.污泥与餐厨垃圾联合厌氧发酵产氢余物产甲烷条件优化研究[J].环境工程学报,2014,8(8):3449-3453.
|
[22] |
郑育毅,林鸿,林志龙,等.不同碱剂对污泥与餐厨垃圾联合厌氧发酵产氢余物产甲烷的影响[J].环境工程学报,2016,10(1):393-398.
|
[23] |
CHEN Y,LIU H,ZHENG X,et al.New method for enhancement of bioenergy production from municipal organic wastes via regulation of anaerobic fermentation process[J].Applied Energy,2017,196:190-198.
|
[24] |
BALDI F,PECORINI I,LANNELLI R.Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production[J].Renewable Energy,2019,143:1755-1765.
|
[25] |
SAHLSTROM L.A review of survival of pathogenic bacteria in organic waste used in biogas plants[J].Bioresource Technology,2003,87(2):161-166.
|
[26] |
LIN Y,WU S,WANG D.Hydrogen-methane production from pulp & paper sludge and food waste by mesophilic-thermophilic anaerobic co-digestion[J].International Journal of Hydrogen Energy,2013,38(35):15055-15062.
|
[27] |
LUO H X,LI Y,YU Y F,et al.Influence of the Inoculation Volume on Methanogenesis by Thermophilic Anaerobic Digestion with Residue from Hydrogen Production Fermentation Using Combined Substrate of Sludge and Food Waste[J].Advanced Materials Research,2014,878:496-503.
|
[28] |
CHAKRABORTY D,KARTHIKEYAN O P,SELVAM A,et al.Co-digestion of food waste and chemically enhanced primary treated sludge in a continuous stirred tank reactor[J].Biomass & Bioenergy,2018,111:232-240.
|
[29] |
LOGAN B E,OH S E,KIM I S,et al.Biological hydrogen production measured in batch anaerobic respirometers[J].Environmental Science & Technology,2002,36(11):2530-2535.
|
[30] |
谢育红,陆源,刘常青,等.污泥前期处理对测定其总糖的影响研究[J].环境科学与技术,2014,37(4):156-160.
|
[31] |
赵庆祥.污泥资源化技术[M].化学工业出版社,2002.
|
[32] |
悉旦立.环境监测(修订版)[M].高等教育出版社,1995.
|
[33] |
任南琪,马放.污染控制微生物学原理与应用[M].化学工业出版社,2003.
|
[34] |
林加涵.现代生物学实验[M].施普林格出版社,2000.
|
[35] |
WU L J,HIGASHIMORI A,QIN Y,et al.Upgrading of mesophilic anaerobic digestion of waste activated sludge by thermophilic pre-fermentation and recycle:process performance and microbial community analysis[J].Fuel,2016,169:7-14.
|
[36] |
蒲贵兵,吕波,孙可伟,等.初始pH值对泔脚发酵产氢余物甲烷化的强化研究[J].环境工程学报,2010,4(3):633-638.
|
[37] |
NOLLA-Ardevol V,STROUS M,TEGETMEYER H E.Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions:biogas production,metagenome,and metatranscriptome[J].Frontiers in Microbiology,2015,6:1-21.
|
[38] |
RAWOOF S A A,KUMAR P S,VO D-V N,et al.Sequential production of hydrogen and methane by anaerobic digestion of organic wastes:a review[J].Environmental Chemistry Letters,2020:1-21.
|
[39] |
De GIOANNIS G,MUNTONI A,POLETTINI A,et al.Energy recovery from one- and two-stage anaerobic digestion of food waste[J].Waste Management,2017,68:595-602.
|
[40] |
鲁珍,周兴求,伍健东.初始pH对产氢发酵液厌氧产甲烷的影响研究[J].环境工程学报,2011,5(5):1115-1118.
|
[41] |
SILVA F M S,MAHLER C F,OLIVEIRA L B,et al.Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste,sewage sludge and glycerol[J].Waste Management,2018,76:339-349.
|
[42] |
HOU T,ZHAO J,LEI Z,et al.Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation[J].Science of the Total Environment,2021,761:143234.
|
[43] |
郑育毅,林鸿,罗鸿信,等.污泥与餐厨垃圾联合厌氧发酵产氢余物产甲烷过程底物指标变化[J].环境工程学报,2015,9(1):425-430.
|
[44] |
LI Y,CHEN Y,WU J.Enhancement of methane production in anaerobic digestion process:a review[J].Applied Energy,2019,240:120-137.
|
[45] |
ZOU X M,YANG R J,ZHOU X,et al.Effects of mixed alkali-thermal pretreatment on anaerobic digestion performance of waste activated sludge[J].Journal of Cleaner Production,2020,259:120940.
|
[46] |
YANG Z Y,WANG W,LIU C,et al.Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion:selection of strains and reactor performance evaluation[J].Water Research,2019,155:214-224.
|
[47] |
SUNYOTO N M S,ZHU M,ZHANG Z,et al.Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste[J].Bioresource Technology,2016,219:29-36.
|
[48] |
WANG Q,PENG L,SU H.The effect of a buffer function on the semi-continuous anaerobic digestion[J].Bioresource Technology,2013,139:43-49.
|